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ABSTRACT 

We prove ex tens ions  of Menchoff ' s  inequal i ty  and  the  Menchoff -  

R a d e m a c h e r  t heo rem for sequences  { fn}  C Lp, based on the  size of  the  

n o r m s  of s u m s  of sub-blocks  of the  first n funct ions .  T h e  resu l t s  are ap- 

plied to the  s t u d y  of a.e. convergence of series ~-~n anTng/n~ when  T is 

an  L2-contrac t ion ,  g E L2, and  {an } is an  appropr ia te  sequence.  

Given a sequence  {fn} C Lp(~t, ~), ] < p ~_ 2, of  i ndependen t  centered 

r a n d o m  variables,  we s t u d y  condi t ions  for the  exis tence of a set  of  x of  

p -probabi l i ty  1, such t ha t  for every cont rac t ion  T on L2(Y,  Tr) and  g C 

L2(~),  the  r a n d o m  power series ~ n  fn(x)Tng converges ~-a.e. T h e  con- 

d i t ions  are used to show tha t  for {fn} centered i.i.d, wi th  f l  E L log + L, 

there  exis ts  a set of  x of full measu re  such t ha t  for every cont rac t ion  T 

on L2(Y, r )  and  g E L2(~-), the  r a n d o m  series ~-~n fn(x)Tng/n converges 

~-a.e. 

1. I n t r o d u c t i o n  

Motivated by the problem of almost everywhere convergence of Fourier series, 

Plancherel [37] studied the a.e. convergence of orthogonal series (for earlier work 

see the introduction of [38]). Rademacher [38] and Menchoff* [31] proved (inde- 

pendently) the following improvement of Plancherel's result (which for Fourier 

series had been observed by Hobson [22] to be equivalent to a result of Hardy 

[54, Theorem III.4.4]). 

* We use Menchoff's own spelling of his name in the papers he wrote in French. 
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THEOREM 1.1: Let (~,#) be a probability space, and let {fn} C L2(#) be 
an orthogonal sequence. If  Y'~=l Ilfnll2(l~ 2 < cr then the series ~ncc=a fn 
converges a.e. 

When (f~, #) is a a-finite measure space, let/2 be a probability equivalent to #. 

The order preserving isometry between Lp(#) and Lp(/2) (e.g., [27, p. 189]) pre- 

serves pointwise convergence, so all statements concerning one Lp space proved 

for probability spaces, like Theorem 1.1, are valid also in a-finite measure spaces. 

We therefore deal in this paper only with (f~, #) a probability space. 

Menchoff [31, Part III] extended Theorem 1.1 to the following. 

THEOREM 1.2: Let {fn} be a sequence in L2(p), and let {Pn} be positive 
numbers such that 

' ] ' 
(1) E fk <- E P2k for every l > j >_ O. 

k----j-t-1 k = j + l  

IRES1__ p~(logn) ~ < ~ ,  t~en the series En=10~ A converges a.e. 

A sequence {fn} C 55(#) satisfying (1), for {Pn} with EnCX)__l p2 < (20, Was 
called quasi orthogonal in [31, Part III]; this term is defined differently in [24], 
where an application of Theorem 1.2 is given. 

An important step in the proof of Theorem 1.1 is the following inequality for 

n orthogonal functions (see Salem [41] for a different proof): 

Jr (2) max . . . f k  < ( 2 + l o g  sn) 2 Ilfkll~. 
l<_l<_n f k.~_l_ --  k=l  

In the proof of Theorem 1.1 in Zygmund [54, w it is also proved that 

under the theorem's assumptions we have 

sup fk <_ A (logk)2llfkll~. 
n>_l k=l  k=l  

Khintchine and Kolmogorov [26] proved that if {f~} C L2 is a sequence of 

centered independent random variables, then convergence of ~ n  II fn I IN implies 
a.e. convergence of ~ n  fn. Marcinkiewicz and Zygmund [30] obtained results 

for series of centered independent random variables in Lp, 1 < p < 2. 

Remark: Note that for any sequence {fn} C Lp(#), 1 _< p < oc, convergence 

of ~ Ill.lip implies a.e. absolute convergence of ~ f~ (we may assume that 

# is a probability, and obtain convergence of ~ n  II frill1). 
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Tandori [48] (for a detailed proof see also [49]) proved for {fn} orthogonal 

that  if ~n~176 Ilfnll~ lognlog+(1/llfnll~) < oc, then ~ fn converges a.e., which 
strictly improves Theorem 1.1 (see [34] and [49]). This condition is necessary in 

the following sense [46]: I f  {a,~} is a sequence such that ~n~176 anr converges 

a.e. for every orthonormal sequence {r then ~n~176 la~l 2 log n log+ (1/lanl 2) < 
oo. If {lanl} is non-increasing, then ~n~176 l an12 (log n)2 < oo [47]. For  additional 
information see [35]. Weber [51] extended Theorem 1.2 by the method of ma- 

jorizing measures, replacing ~ n  P2n(l~ < co by 

c o  

E 2 1-5 2 1+5 pn(lOg n) (log+(1/Pn)) < 
n : l  

for some 0 < 5 < 1. 

In [31, Theorem 12] Menchoff proved that  for { fn } orthogonal, convergence of 

the series ~n~__l llfn[l~ for some a < 2 implies a.e. convergence of ~ fn. The 

inequality I1" lie2 <_ I1' Ileo for 1 < a < 2 allows to deduce this result from the 
following BiUinglsey-Steehkin theorem (see [6, p. 102, problem 6]; a proof for 
p > 2, based upon ideas of Stechkin, is given in Gaposhkin [15, Theorem 1.3.5]; 
Weber [53] has recently proved the theorem by the metric entropy method). 

o ~  o o  THEOREM 1.3: Let {fn}n=l C Lp(#) with 1 < p < oo. Let {ran}n= 1 be a 
sequence of non-negative numbers, such that for some q > 1 we have 

A ___ forl>j___o. 
k=j+l  k=j+l  

Ie E %l < then converges a.e. 

Remarks: 1. For q = 1 Theorem 1.3 is no longer true (e.g., Menchoff's example 
[31, Theorem 3]). 

2. From [32, Theorem 1] we obtain II SUPn_~I I Ek= l  fklll p ~-- Cp,q(En~176 ran) q" 

2. E x t e n s i o n s  of  the  M e n c h o f f - R a d e m a c h e r  t h e o r e m  

In this section we use strong maximal inequalities of M6ricz [32] to obtain ex- 

tensions of Theorem 1.1 for sequences in Lp, and discuss their connection with 
previously known results. 

Definition 2.1: A triangular sequence of real numbers {d(j, l) : 0 <_ j < l <_ n}, 
is said to be s u p e r  add i t i ve  if 

(3) d ( j , k ) + d ( k , l )  ~_d(j, 1) for a n y 0 < j < k < l < n .  
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Remark: If  {d( j , l )}  is a non-negative super additive sequence and q > 1, 

then {(d(j , l ) )  q : 0 <_ j < l <_ n}, denoted by d q, is also super additive, since 

O~ q -~ j~q __~ (O~ ~- ~)q for every (~,/~ _> 0 (in fact I1" I ltq <_ I1" I It1). 

Example  2.1: Let {mk}~=l be a sequence of non-negative numbers, and let 
q > 1. For any n and 0 _< j < I _< n, define d(j, 1) l = ~ k = j + l  ink, which is 

obviously super additive. By the previous remark, z {(~-~k= j+ i  ink) q} is a super 
additive sequence. 

Remark [29]: Let d(j, l) be a non-negative super additive sequence defined for 

every l > j > 0. Then by (3), d(0, n) is non-decreasing, and the sequence {ran} 

defined by ml = d(0, 1) and mn = d(O, n) - d(0, n - 1) for n > 1 satisfies, by 

(3), 

l 

(4) d(j , l )  <_ d(O, 1) - d(0, j )  = E mk for l > j _> 0. 
k----j-~l 

Let {d(j,  l) : 0 <_ j < l <_ n}  be a non-negative super additive Definition: 

sequence, and for {fk : 1 < k < n} C Lp(#) put 

k = j + l  
for every 0 _< j < I _< h i .  

Clearly A (d) < A(n d) for nl < n. Note that when A~  ) < oc, we must have n l  _ _  

~Zk=j+l fk = 0 whenever d(j, l) = 0, so 

{ } Ek: +l AII  
A(n d) = max  d(j, 1) : d(j , l )  r O, O <_ j < l < n . 

If d(j, l) > 0 for 0 _< j < 1 < n, then A (d) is finite, by the above formula. 

The following lemma (and proposition) can he deduced fi'om Theorem 3 of 

Mdricz [32], which was proved by the method of [42] (see [33, Theorem 3.1] 

for a more general form). For the sake of completeness we include a different 

proof, based on the proof of Menchoff's inequality as given in Doob [12, Ch. IV, 

Lemma 4.1, p. 156] (see also Zygmund [54, Ch. XIII,w 

LEMMA 2.1: Let {fk}~_ 1 C Lp(p), 1 < p < oc. Let {d( j , l )  : 0 < j < l < n} be 
a super additive sequence o f  non-negative numbers with A ~  ) < oc. Then 

l<_~<~l~__lfk <-- A(a)(2 +log2n)Pd(O,n).  
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Proob Let 0 _< r be an integer with 2 r < n _< 2 r+l. Put  gk = fk if 1 < k < n; 

for n < k < 2 ~+1 put gk = 0. Also, put  d(j , l )  = d(j,I) i f 0  _< j < 1 _< n; 

put a~(j,l) = 0 i f l  > j _ n; for j < n _< l put d(j , l )  = d(j,n). Clearly 

{a~(j,/) : 0 < j < l <: 2 ~+1 } is a super additive sequence. 

By the definitions of {gk} and a~, for any 0 _< j < l < 2 r+l we have 

(,) 
l p 

E gk < A(nd)d(j,l) 
k = j + l  P 

with the same A(n d) as above. 
_ _ ~ - ~ m 2 ~  For any 0 < i < r + 1 and 1 < m < 2 r+ l - i ,  define Sm,i = z--k=(m-1)2~+l gk 

2r+ l - - i  
and S;  = maxi<m<2,.+l-~ [Sm,il. Clearly, [S~[ p <_ ~ m = l  ]Sm,i[ p" Integration, 

(*), and super additivity of ct yield 

IIS 'll  < 

2r+ l - - i  2 r+ l - - i  

E IlSm,illPp <- E A ~ ) d ( ( m -  1)2 i 'mT)  
m = l  m = l  

_< A(f)d(0, 2 r + i )  = A(d)d(O, n). 

J Using the binary expansion of j ,  the sum ~k=l gk can be represented as a 

sum of disjoint blocks of different sizes Sm# for suitable m's and i's. By this we 

have that  
j r + l  

max I E g k [  < E s ; .  
1 < j < 2 ~ + 1  

k = l  i----O 

Hence 

max = max < [IS*lip < ( r + e ) [ d ) d ( O , n ) ]  t/p 
l<_j<n l <  j < 2 " +  1 - -  - -  

"---- k = l  i = 0  

and the result follows. | 

Remarks: 1. For p = 2 and {fk}~=l orthogonal, Menchoff's inequality (2) 

follows by taking d(j, l) l : Ek=j+l  Ilfkll~. 
2. For p = 1 we easily conclude 

l maxF   
l_<L<n 

n n 

_< IlfklJl __ A~)d(k- 1, k) < A(d)d(O,n). 
k = l  k----1 

3. Billingsley [6, p. 102, problem 5] outlines a proof of the lemma for the 

special case of A(n d) = 1 for d(j, l) as in Example 2.1. In any case, defining 
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d ' ( i , j )  = A(nd)d(i,j) we obtain A~ ') = 1, so for fixed n the assumption A~ ) = 1 

is not a restriction. 

4. The use of sequences satisfying (3) in the context of Menchoff's inequality 

is implicit in [42], and explicit in [44]. More general sequences were used in [33]. 

5. Also other authors, like Hannan [21, Lemma], Gaposhkin [16], 

[17, Theorem 3], and Houdr~ [23, e.g., Theorem 3.1], considered various ex- 

tensions of Menchoff's inequality, or new applications of it, all beyond the scope 

of orthogonal functions. 

6. An inspection of the proof of the lemma shows that  the result is true for 

an arbitrary Banach lattice of functions. 

k n PROPOSITION 2.2: Let {f '}k=l  C LB(#) with 1 < p < oc. Let 

{d(j , l)  : 0 < j < l <_ n} 

be a super additive sequence of non-negative numbers with A (d) finite. Then 

for any 0 < nl  < n, we have 

m a x  _< A )(2 + log (n - n l ) ) P d ( n i , n ) .  
nl<l<_n k----W+l 

Proof: For nl = 0 this is Lemma 2.1, so we assume nl > 0. Put  gk = fk+nl for 

any 1 < k < n - n l ,  and put  d(j , l)  = d(j  + n l , l  +n l )  for any 0 <_ j < l <_ n - n 1 ;  

clearly a~ is a super additive sequence on {0 _< j < l _< n - nl}.  

F o r 0 _ < j < l _ < n - n l  we have 

gk = < A )a(j + n ,l + = 
k=j+l k=j+l+nl 

~ ~ 

which yields that  ~(d)nl, defined by (5) for d and {gk }, satisfies A(nd)nl <_ d(n d) 

< oc. Using Lemma 2.1 we obtain 

max ~ max 
nl<j<_n l<j<n--nl k=l k=nl+l - - 

< A(d_)n, (2 + log2 (n - nl))Pd(0, n - hi)  

<_ A(~ d) (2 + log 2 (n - nl))Pd(nl ,  n). | 

Remark: A tighter inequality than that  formulated in the proposition, which 

depends only on n - h i ,  is given in the last line of the proof, using A(nd._) n~ instead 

of A~ ). 
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k n PROPOSITION 2.3: Let { f ' } k = l  C Lp(#), 1 < p < co, and let 

{d(j,l) : 0 <_ j < I <_ n} 

be a super additive sequence of non-negative numbers, such that A ~  ~) < c~ for 
some q > 1. Then for any 0 ~ nl < n we have 

nl<l~_n k----n1+l 
~ Cp,qA!dq)dq(nl, n), 

where Cp,q = (1 - 2 ( 1 - q ) / P )  - p .  

Proof:  We extend d to all pairs l > j ,  by put t ing  d(j, l) = d(j, n) for 1 > n > j 

and d(j, l) = 0 for j _> n. It is easy to  check tha t  d(j, l) is super addit ive for 

all l > j >_ 0. For k > n define fk = 0, and let d(j,l) = (A(nd~))Uqd(j, 1). It is 

easy to check tha t  II l ~k=j+l  fkll~ <_ (d(j,l)) q for l > j _> 0. We can now apply 

Theorem 1 of Mdricz [32]�9 | 

Remark: 
[29]. 

Notation: 

base 2. 

A different value for Cp,q was obta ined by Longnecker  and Serfling 

Unless otherwise specified, all logari thms in the sequel are to the 

THEOREM 2.4: Let {fn}nC~=l C Lp(p) with 1 < p < co. Let  {d(j,l),  1 > 
j > 0} be a non-negative super  additive sequence, and let 1 << q < oo. Put  
ml = d(0, 1), m n =  d(0, n) - d(0, n - 1) for n > 1, and detlne A (~) as in (5). 
I f  Zn~=l(A~'))Uq(logn)P/qmn converges, then ~n~=l fn converges a.e. and in 
Lp-norm. Fur thermore ,  

n ~ _ l  k----1 P 

[ _< 2 Ilflllp + IIf211p +p(P-I)/P (Af ' ) ) l /q ( lognF/qmn q/p �9 
z 

l Proof: By the remark  following Example  2.1, (4) yields d(j, l) := ~k=j+l  mk _> 

d(j, l) for any l > j _> 0. Hence A (dq) <_ A ~  q) for every n, so it is enough to 

prove the theorem for (t, i.e., we may assume d(j, l) z E k z j + l  i n k .  
�9 (d q) . (d q ) (a) Using the following facts: (i) the definitions of d q and An ; (ii) An 

~(dq) ~l(d~). 
non-decreasing,  so for k _> 2" + 1, we have ,-2,,+1 _ < "'2k , (iii) II " lIe~ <_ II-tie1, 
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we obtain 

oo 2 v+l p oo 2 v+l q 

v p fk d# < Z..,~ 2,'+~ mk 
v = l  k = 2 " + l  v = l  k = 2 " + l  

<-- ~ (A~dq))l/q(logk)P/qmk 
v = l  k = 2 v + l  

( v ~ X  '~v-~- 1 ~d ) q  <-- Z (A q))l/O(logk)P/qrrtk 
- k=2-+1 

Q~(A~en q)) (1) qmn) q - - ~/q ogn  p/ < oc. 

r 2 v+l 
Hence (by Beppo Levi) the integrand Y'~,=I vP[ Ek----2v-t-1 fkl p converges a.e. 

(b) For any naturals r and m we obtain, using HSlder's inequality, 

i ~.~ fk ~_ v~ m 2  m + r  p m-4-r--12~ fkp <~(v~_mV 2v+lfk~) p 
k = 2 m + l  - k = 2 " + l  -- k = 2 " + 1  

(m+r l 2v 1 p;( +rl 1 ) 
~-- vP Z fk Z vp/(p-1) 

-- k=2"+l v=m 
(~ 1 ) P - I ( v ~ I  i +i ,,) ~-- vp/(p_l) vP . v=m ---- k----2"+l 

p - 1  

The first factor in the last line converges to zero (as m ~ co) as the tail of a 
convergent series (since 1 < p < oc), while the last factor converges a.e. by (a), 
so {~k=l  fk} is a Canchy sequence a.e., and hence converges a.e. By taking 
integrals of the above inequality, and considering the convergence proved in (a), 

2 m 
{~k=l  fk} is a Cauchy sequence in Lp-norm, and hence converges in norm. 

(c) Using Proposition 2.2, and the inequality [[. [[eq _< [[" [[el, we have 

oo 2 m+l 

max < ~ . - 2 m + 1 , , o  ~ A.~ mk 
m--1 2 m < n < 2 m + l  -- k = 2 m + l  m = l  " k = 2 m + l  

-- m~__l ( 2m+l q < Z .,k=~2~+1 (A~dq))l/q(lOgk)p/qmk) 

cr 2 m+l q 

~ ( m ~ _ l  Z (A~dq))i/q(l~ 
_ k = 2 m + l  
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( ~ (A~) < )'/qm.) q ) 1/q log n < oc. 
n = l  

The above inequality clearly yields that  max2,,.<,,<_z~+, I Y'~-=2,.~+1 fkl ~ 0 as 
m ~ e~, almost everywhere and in Lp-norm. 

OC 2 m 
Now, (b) and (c) imply that  ~ = 1  f~ converges a.e. to g := limm-~o ~ = 1  f~, 

since for 2 m < n _< 2 re+l, we have 

]~:k-g]< I~-~:k-g +] ~ :k <l~:k--9+ max I ~ :k. 
k = l  k = l  k = 2 " ~  + 1  k = l  2 m  < n - < 2 m + a  k = 2 m - I - 1  

By considering the norm convergence proved in (a) and (b), the Lp-norm 

convergence follows by taking the Lp-norm in the above inequality. 

Proof that the maximal function is in Lp: The inequality in (b) with m = 1 

yields 

2 "+I ,p (W~l 1 )P--I(vw~.I 2v+l P) sup Z : .  _< : E:. 
r > l  k - - 3  ' vP/(P--1) 

- -  _ - -  _ k = 2 v - I - 1  

Integration of the above inequality and application of (a) yield 

(*) sup fk ~ pp-1 A ))l/q(logrt)P/qmn . 
r > l  k = 3  n = l  

The inequality in (c) yields 

(**) 

Since 

sup minx fk < max 
m > l  2 m  < n < 2 r " + l  - -  2 m  < n  < 2 2 m + 1  

--  --  k = 2  m q-1  m = l  - -  k----2 m q-1  

< _ Uq ogn  P/qmn 
n=l 

supl f k l ~ l f a l + l f = l + s u p l ~ f k l ,  
n ~ l  k = l  n > 3  k • l  

combining (,) and (**) with 

sup < [Iflflp + Ill, lip + sup fk 
n _ > 3  - =  m _ > 2  k = 3  P 

~ fk p + sup max _ _  
m > l  2"~ < n ~  2 m + l  

- -  k = 2 m + l  

we obtain inequality (7) for the maximal function. | 

<oo .  
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Remarks: 1. The proof of the i.e. convergence is based on the proof of the 

Menchoff-Rademacher theorem as given in Alexits [1, p. 80]. 

2. Let p = 2 and {fn}n~__l be orthogonal in L2. By taking q = 1 and 
l d(j, 1) = ~k=j+l  IIfkll~ in the above theorem, we simply get the Menchoff- 

Rademacher theorem. 

3. Zygmund's proof of the Menchoff-Rademacher theorem [54, Theorem 

XIII.10.21] is different from Alexits's, and gives also the square-integrability of 

the maximal function. Our proof that  the maximal function is in Lp is different 

from Zygmund's (which uses the Riesz-Fischer theorem). 

4. Clearly Ilfnll p _< ,,nzl(dq)~q,,on for every n. For p = 1 this yields ~-~.n I l f n l l l  -- <~ 
A(dq ) q :n ran" The condition of the theorem for p = I implies ~ n ( A ~ ) ) l / q m ~  < 

zl(dq)__q 
oc, which yields )-'~,~ "'2n "*n < OC. Hence ~ n  Ilfnlll ( OO, SO E n  [fnl < (:X:) i.e. 

In the Menchoff-Rademacher theorem q = 1, and A(n d~) = 1 for every n. 

When q > 1 much more can be said, by using Proposition 2.3. 

THEOREM 2.5: Let {fn}n~=l C Lp(p) with 1 < p < r Let {d(j, 1) : l > j > 0} 

be a non-negative super additive sequence, and assume that {A~ ~) } is bounded 

for some 1 < q < ~ .  I f  {d(O,n)} is bounded (i.e., converges), then y~n~__l fn 
converges i.e. and in Lp-norm. Fhrthermore, 

sup <_ Cp,q sup A ~) lim d(0, n). 
n -=  n n--+oo 

Proo~ 
)-~=n1+1 mk by (4), letting n --+ oo in (6) yields 

sup ~ <_ ACp,q mk 
l>nl  k-- 1 k-- 1 

This shows all the assertions. | 

Let A = supn A (dq). Put m n =  d(O, n) - d(0, n - 1). Since d(nl, n) <_ 

0. 
n1-4-oo 

l 
Remark: Theorem 1.3 is the case where d(j, l) = E k - - j + l  m k  for 1 > j _> 0. 

Notation: For a non-negative function g(u) and a real we denote [g(u)] ~ by 

We will show that  when q > 1, Theorem 2.4 can be improved, even without 

boundedness of {A~ q) }, by assuming convergence of a smaller numerical series. 
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oo THEOREM 2.6: Let {fn}n=~ C Lp(#) with 1 < p < oc. Let 

{d(j,l), l > j >_ 0} 

be a non-negative super additive sequence, and let 1 < q < c~. Put  ml = d(O, 1), 

m n =  d(O, n) - d(O, n - 1) for n > 1, and define A(f ~) as in (5). Let r 
be a positive increasing function such that ~n%l 1/r converges. I f  
En~__l(A~d"))'/qCP/q(logn)mn converges, then E.~176 fn converges a.e. and in 

Lp-norm. Furthermore, SUPn>l [~k= 1 fk[ E Lp, and if ~(0) >_ 1 there exists 
C > 0 such that 

k=l 

C(;_l)/p ~ ~ " r A  (d~') \ q/P] <_ 2 l]f, llp + l[/21Ip + i z.~, 2n )l/q~bP/q(l~ [. 
\ n=l  I J 

Proof." The proof proceeds along the same lines as that  of Theorem 2.4. Here 

we use Proposition 2.3 instead of Proposition 2.2. As in Theorem 2.4, it is 

enough to prove the theorem when d(j, l) l ---- E k = j + l  ink" 

(a) Using the monotonicity of r we obtain 

O0 2 v + l  p 2 ~'+1 

v=l - -  1 fk d# ~ q/'P{" ~A(dq) q 
k v=l  w Xk-- 1 

<_ ~ _2~+ A(: )1 /q  p/q 10 ( 2k ) ~ ( g k)mh 
v=l  " k-- 1 

- -  k = 2 "  - 1 - 1  

: 6 [ A ( d q ) ~ l / q ~ P / q  ) q = ~ s  2n , (logn)mn < co. 

Cx3 2 v+l 
Hence (by Beppo Levi) the integrand ~v=l r Ek=2"-t-1 fk] p converges a.e. 

(b) For any naturals r and m we obtain, using HSlder's inequality, 

P l ( 1),  2 " + ' '  f k  = m ~ r . f l  ~ m~_~-I 2v-l-lE 

k---- ~ 1 v=m k-.=T'+l v=m k=2v+l  
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(m+rv:~--ml I 2~+' fk P) m+r-1 1 )p-1 
~_ +P(v) E ( v~m +pl(p'-l)(v) 

= k = 2 " + 1  -- 

(vZm 1 ) P - I ( ~  ~b ( ~ I 2~+~ fk p) Z _< 
-- "rP/(P---1)"V' \ v = l  k=2~q-1 

2 m 

Using (a) and (b) we conclude that {Y~-k=l fk}  is a Cauchy sequence a.e. and in 
Lp-norm, hence converges a.e. and in norm. 

(c) Using Proposition 2.3, we have 

d 2 m < n < 2 m + l  - -  , ~ 2 m + l  
= k = 2 m + l  m : l  k--  1 

oo 2m+1 , ,(d )~l/q~. 

m = l  k--  1 

<__ Cp,q k ltA~k ) 'ink] 

oo q 

= C ( V~[A(dql'~l/qm "~ P'qt I ~t 2n ] n] 

(dq) 1/q p/q n m <_Cp,q A2n ) r ( l o g )  ~ <oo.  
\ r t : l  

The above inequality yields that max2,<<n<2,~+, I ~k~__2,,~+1 fkl --+ 0 as m --+ oo, 

almost everywhere and in Lp-norm. 
Now, (b) and (c) imply that y~n~176 fn converges a.e. and in Lp-norm. 

Proof  that the maximad function is in Lp: The inequality in (b) with m = 1 

yields 

sup fk <_ cpl (p_l ) (v  ) r>l = 

oo 2 "+1 p 

-- v=l k=2vq-1 

Integration of the above inequality and application of (a) yield 

(,) fk <_ K p-1 (A(2~))'lqr 
r>_l k=3 n~l 

By assumption r ~ oo, so r > 1 for x > N. The inequality in (c) 
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yields 
(**) 

II s Illl/00 i5 i sup max fk < ~-" max f~ dp 
--  ~..41 2 m < n < 2 m +  1 k=2m_t_l m > 1 2 m < n _  <2m+1 k-- 1 = - 

(Z__l" '(d~) ' l /qm ~ < Cp,q  ( A ~ ) ) U q r  + B < oo, "~Cp,q [-/t2n ) n /  _ 

where B is 0 if ~b(0) > 1, and is otherwise a finite SUE without r  of the 

terms having r  < 1. When ~p(0) _> 1 we use (*) and (**), and obtain (8) 
for the maximal function with C = K (p-1)/q + (CB,q) 1/q. m 

m o o  COROLLARY 2.7: Let {fn}n~176 C Lp(l~) with 1 < p < oo. Let { n}n=l be a 
l sequence of non-negative numbers, and put  d(j, l) = ~ k = j + l  rnk for 0 <_ j < I. 

Fix 1 < q < oo, and define A ~  ~) as in (5). I f  

o o  

~-~ {A(d q) ~ 1/q qO" n ~ (p-1)/q (lo- 10- n ~ (P- 1)/q+em ~..4 K 2n J k ~ ] k 5 ~ ] n 
n=2 

converges for some e 

Furthermore, 

> O, then ~ - - 1  f~ converges a.e. and in Lp-norm. 

sup ? p fk _< 
tl n > l  = 

[ ) (a(d)  ~l/q {lc, er ~ (p-1) /q  ( p - 1 ) / q + e m n  2 f l l l p - t - l l f 2 l ] p - t - C  / ~ t ' ' 2 n ]  t ' v6 '~]  ( l o g l o g n )  
n = 2  

for some C > O. 

When q >_ p, Theorem 2.4 (and Corollary 2.7) can be improved as follows. 

THEOREM 2.8: AssuRe  that in Theorem 2.4, q >_ p > 1. I f ~ = l ( A ~ q ) ) l / q m n  

< oo, t h e n  EnC~=l fn converges a.e. and in Lp-norm, with suPn> 1 1~2=1/hi  e 
L p .  

Proo~ As in the proof of Theorem 2.6, we may assume d(j, l) t E k - - = j + l  i n k .  

For brevity denote A~  q) by An. By definition, Ilfnll p < A n m  q. By induction 

on l we prove [[ l l Ek=j+l AIIf < (Ek_-j+l Alk/qmk) a for 0 _< j < l, using 
a q/p + ;3 q/p <_ (a + ~)q/P, as follows: 

t 
i/q ) < A~,lqmk/ . 
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Hence the assertions of the theorem follow from Theorem 2.5; see also Theorem 

1.3. | 

m THEOREM 2.9: Let {fn}n~176 < Lp(#) with 1 < p < oc. Let { n}n=l be a 
sequence of non-negative numbers, and let 1 < q < c~. Assume that for any 

n > 0 there is a constant An < oo such that 

(9) •  (• fk <_An mk for O < j < l <_ n. 
k = j + l  k = j + l  " 

Then En~176 fn converges a.e. and in Lp-norm, with SUPn_l [ }-'~-~-=1 fk[ e Lp(#), 

i f  one of the following sets of conditions holds: 

(i) q = 1 and E~-=I A2n(l~ < oo. 

(ii) q > 1, {An} is bounded, and ~-~nO~ mn < 00. 

(iii) p > q > 1 and ~n~176 A12/q(logn)(p-1)/q(loglogn)(p-1)/q+emn < cx~. 

(iv) q _> p > 1 and ~n~__l A~/qmn < oo. 

Proof: The previous results apply to d(j, l) = ~k=j+ll mk, since A(n dq) <_ An. 
| 

PROPOSITION 2.10: Let {an} be a sequence of complex numbers, and let 

1 < p < oo and 1 <_ t < oo. Let {fn} C Lp(#) such that for some constant 

C > 0 we have 

(10) E akfk <_C [ak[ t f o revery l> j>O.  
k=j+l " k = j + l  

I f  either 

(i) p _< t 
or 

(ii) p > t 

then ~n~=l 

and En%I ladp(l~ ~ < o~, 

and En%, ranl ~ < o~, 
a , fn  converges a.e. Furthermore, SUPn_> 1 1 ~ = 1  akh[ is in Lp(t~). 

Proof'. 

yield 

(i) Since t /p  _> 1, condition (10) and the inequality 11" Ile~p _< I I  lie, 

<_ c ~ lak[ p~/~ <_ cp y ~  lakl p, 
k = j + l  " k = j + l  k = j + l  

so condition (9) is satisfied by the sequence {akfk}, with mk = [ak[ p, q = 1, 

and An = C p. Now Theorem 2.9(i) applies when ~n~176 lanlP(logn) p < oo. 
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(ii) Condition (10) yields [1 l t ~ = j + l  akAllg <_ (~k=j+l ICakl~) p/~ for every 

l > j _> 0, and since p > t we obtain the a.e. convergence of ~ k  akfk from 

Theorem 1.3. Proposition 2.3 yields 

max E akfk ~_ Cp,p/t E [Cak[t " 
l~_l~_n kml i . p  k=l  

Letting n -+ cc we obtain t ha t  SUPn>l [ ~ . = 1  a k f k [  is in Lp(#). | 

Remarks: 1. When p < t, convergence of ~ n  [an[P(l~ p implies convergence 

of ~ n  lan[ t" When p > t, convergence of ~ n  [an[ t implies that  of ~ n  [an[ p" 

2. Theorem 1.2 follows by applying Proposition 2.10(i) to { ~ f k } ,  with p = 

t = 2 and ak = Pk, since (10) follows from (1). 

In the sequel we will denote the unit circle by F, and the normalized Haar 

(Lebesgue) measure by dA. 

PROPOSITION 2.11: Let { a n }  be a sequence of complex numbers, and let 

1 <_ p < oc and q ~_ 2 with dual index q' = q/(q - 1). Let { fn}  C Lp(p) 

such that for some constant C > 0 we have 

l l 

(11) ~ akA p < C ~ ak~k for any l > j _> 0. 
k=j+ l  k= j+ l  Lq(dA) 

Then: (i) (10) holds with t = q' ; (ii) when q' <_ p, for every I > j >_ 0 we have 

I 

z • 
k=j+ l  "P k----j+l 

(12) 

~_ C ( l  - j ) ( p - l ) / p - 1 / q  laklP 

k-- 1 

Proof: Note that  (11) implies Ilfnllp ~- C when an ~ O. For q = ec we have 

q~ -- 1, and we combine (11) with 

l l 

k= j+ l  k=j+l  

1 ~ \ 1/p 

la L <_ (t - j )  J 1 la lP) 

(i) Assume 2 _< q < oo. Then 1 < q~ <: 2, so by the Hausdorff-Young theorem 

we obtain 

s Z lakl ~ 
k=j--bl k-- 1 
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(ii) When 1 < q' _< p, the inequality [[. [[q, _< [[. [[p in probability spaces yields 

1 ljq  (l akqllllql lakl q' = (I _j) l /q '  
k-- 1 k=j+l 

(1 • 
~_ (l -- j ) l /q '  - ~  lakl p 

k=j+l 

Using (11) the result follows. | 

Remarks: 1. When SUPn IIfnllp < co and all an are non-negative, (11) holds 
with q = co. 

2. By Proposition 2.11, (11) implies (10) with t = q', so Proposition 2.10 can 

be applied. 

3. Recall the following definition (see [23] and the references therein): Let 1 < 

p, q < co. A sequence of random variables {fn} is said to be (p, q ) -bounded ,  if 

there is a universal constant C > 0 such that  for any finite sequence of complex 

numbers a j + l , . . .  ,at, 0 <_ j < l, (11) holds. 

In Proposition 2.11 we assume that  we are given only one sequence of complex 

numbers {an} such that  the pair ({an}, {fn}) satisfies (11) for some q > 2 and 

obtain (10) with t = qt. 

4. Houdr~ [23, Theorem 3.1] proved that  if (11) holds for q > p = 2 and 
o o  

(13) E lanl21n](q-2)/q(l~ + In])2 < co, 

then ~ n  anfn converges a.e. (the proof in [23] does not need {fn} to be (2, q)- 

bounded). When q = 2 this convergence follows from Proposition 2.10(i), and 

when q > 2 we can use Proposition 2.10(ii) with t = q', since HSlder's inequality 

in g2/q' yields 

c~ n (q-2)/(2q-2) (log(1 + n)) q' 

tanIq' = E lanlq' n(q-2)/(2q-2)(log(1 + n))q' 
n = l  n = l  

(2--q') /2 

_< + 
n = l  = n(log(1 + n)) 2q'/(2-q') 

<~co .  

Note that  convergence of ~,~~176 1 [anl q' does not imply (13). Specifically, for q > 2 

define an = n -(q-2)/2q for n = 2 k, and an = 2 -n  otherwise. We then have 
OO o o  

E lanl2n(q-2)/q(l~ >- E lanl2n(q-2)/q(l~ = E k2 = co" 
n = l  nE{2 k } k= l  
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On the other hand, it is easy to check t h a t  ~n~176 lanl q' < e~. 
5. For a (p,q)-bounded sequence {fn}nez with p < 2 < q, a.e. conver- 

gence of }-'~k~=_~ akfk is proved in [23] for any {an} satisfying (13). The (p, q)- 

boundedness is used there to obtain that  {fn} is a projection of a (2, q)-bounded 

sequence. 

We deal here only with one pair ({an}, {fn}) that  satisfies (11), rather than 

(p,q)-boundedness of {fn}; for q' < p, condition (13) implies the a.e. con- 

vergence of ~ n a n f n  by Proposition 2.10(ii) (see the previous remark). For 

p < q' < 2, we obtain the convergence from ~n~__l la~lP(logn) p < oc, by Propo- 

sition 2.10(i). This last condition does not imply (13); for the sequence defined 

in remark 5 above, 

oo k p  oo 

tanlP(l~ <- E 2kp(q-2)/2q + E 2-np(l~ < oo. 
n = l  k = l  n = l  

6. Let {fn} C Lp(#), 1 < p < ec, satisfy supn Ilfnllp < oo, and let {an} satisfy 

~nc~=x lanlPnp-l(logn) p < oc. Then ~ n  lanl < ~ ,  since putting p' = p/(p - 1) 

and using Hhlder's inequality we have 

N N 

1 lanln (p-1)/p log n 
E .anl = E n(p-1)/Plog n 
n=2  n=2  

<- n(logn)p' lanlPnp-l(l~ 
- -  n ~ 2  

Hence ~n~=l lanfnl converges a.e. For p = 2 this convergence was proved (using 
deeper results) by Houdr~ [23, Remark 3.4(iv)]. 

7. Let p > 1, define an = 1/n(logn)(loglogn) (p+I)/2p, and put fn = 1. 

Clearly, the series ~n~__l anfn everywhere diverges, but since p > 1, for any 
"rate" 0 <_ bn <_ Crtp-l(logn) p-1 w e  have 

1 ~ oo oo  1 

- E  E --E C lanlPbn <- lanlPnP-l(l~ n(logn)(loglogn)(p+l)/2 < cx~. 
n = 2  n=2  n=2  

Thus the power of n in the condition of the previous remark is optimal, and the 

logarithm should be with power greater than p - 1. 

THEOREM 2.12: Let {fn}~-i  C Lp(p) with 1 < p < oc. Let 

{d(j,l) : 0 <_ j < l < co} 

be a super additive sequence of non-negative numbers, and define A~ ) as in (5). 
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(i) If ~(n) is a sequence decreasing to zero with 0 < ~(n) < C~o(2n), such 
that 

-~ A(d)~~176 < oo, 
n 

r t : l  

then r ~-~k=l fk --+ 0 a.e. and in Lp-norm. Furthermore, 

sup I~o(n) ~ fkt e Lp(p). 
n>0 k=l  

(ii) If in addition 
oo 

~--~[~(n) - ~o(n + 1)](A(~d)d(O, n)) 1/p < oo, 
r t =  l 

then y~n~176 ~o(n) fn converges a.e. and in Lp-norm. Fhrthermore, 
n 

sup lE~o(k) fk  I e np(,). 
n>0 k=l  

Proof: We may and do assume that # is a probability measure. Denote Sn = 
Y~.;=I fk. By the definition of m(n d), we have IIS2., I]Pp < A~d!d(O, 2m). 

By Proposition 2.2 

I i max ~ fk < ~Pa(d) ~'P'4~2"~ 2 m+l 
2m < n < 2 m + l  

- k = 2 m + l  

Since d is a non-negative super additive sequence, we have d(2 '~, 2 m+l) < 
d(0,2 re+l) and d(0, 2 m) < d(0, 2re+l). By using this and the monotonicity 
o f  A (d) n , we have 

tl (2m)&mll  + max fk 
2m<n<2m+l  k__2,,~ +1 ' m : l  (*) 

<2" 3PC p Z A~+lmP~~ 
m : I  

The convergence of the right hand side above will imply the convergence to 

zero of {~o(n) ~2=~ ]k}~, a.e. and in Lv-norm. Indeed, by monotonicity of A~ ), 

~o(n), and d(0, n), term by term estimation and the inequality ~(n) <_ C~o(2n) 

yield 

2m+1 ~1(d) ,~p {9m+1 ~m p Z A(nd)~~176 > 2m "~'2m~ t- J d(0,2 m) 
n -- 2 m+l 

n = 2 m + l  

1 A(d).pr2,~ ~ -> ~-~  2.-w ~ j(m-- 1)Pd(O,2m). 
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By summing on m, and considering the assumption of the theorem, the conver- 

gence of the right hand side of (*) follows, which implies convergence to zero 
(a.e. and in Lp-norm) of 

2 m n 

{p(2m) E f k } m  and {~(2 m) max I E fkl}m. 
k = l  2m < n ~ 2 m + l  k----2m+l 

The claimed convergence to zero (a.e. and in norm) of {~(n) ~k= l  f~} is now 
deduced as in Theorem 2.4. 

Because the series in (*) converges, we can integrate the inequalities 

oo 

m > l  m = l  

and 

sup ~(2 m) max A < ~(2 '~) max h 
m > l  2 m <  n < 2 m + l  - -  2 m < n  < 2 m + 1  

-- -- k : 2 m + l  m : l  - k : 2 m + l  

This implies the integrability of the maximal function. 

Using Abel's summation by parts, 

n n - -1  

(**) E ~ ( k ) f k  = (z(n)Sn + E [ T ( k )  - ~(k + 1)]Sk. 
k----1 k = l  

The first term on the right converges to zero, a.e. and in Lp-norm, as shown 

above. Since # is a probability, the assumption yields 
oo 0<3 

~-~[~(k)  - ~,(k + ~)]llSkll~ _< ~-~[~(k)  - ~,(k + 1)]llSkll,, 
k = l  k = l  

oG 

(* * *) _< E [ ~ ( k  ) - y~(k + 1)](d(O,k)A~d)) 1/p < oc. 
k = l  

Hence the series on the right of (**) converges, absolutely a.e. by the convergence 

of the left term of (* * *), and in Lp-norm by the convergence of the middle term 

of (* �9 *). Hence { ~ . = l  ~(k)fk} converges a.e. and in Lp-norm. 
For the maximal function we have 

sup ~(k)fk < sup I~(n)Sn[ + ~(k) - (fl(k + 1)]lSkl. 
n > 0  k----1 n > 0  k = l  

The first term is in LB as shown before. The second term is in Lp by (* �9 ,). 
| 
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Remarks: 1. Let j be the first integer with f j  ~ 0, so A~ d) > 0. By definition, 

A(n d) and d(0, n) are non-decreasing, so we have 

E ~P(n)(l~ 1) _< A(nd)~p(n)(logn)Pd(O,n) 

n n 
n = j  n = j  

Hence for the convergence of the majorizing series, {~(n)} must decrease to 

zero faster than {1/(logn)l+UP}. On the other hand, the condition 0 < ~(n) < 
C~(2n) does not allow ~ to decrease to zero too fast: ~(n) > ~(1) /n  1~ c 

2. In contrast with Theorem 2.4, Theorem 2.12 gives conditions for a specific 

rate of convergence. It can happen that for given {fn} and d, the series En fn 
does not converge (so the condition of Theorem 2.4 does not hold); in that case 

Theorem 2.12 allows to evaluate the rate of growth of the partial sums. 

3. In order to obtain the a.e. convergence of EnC~__l ~(n)fn from Theorem 2.4, 
one must be able to compute (or estimate) the corresponding A(n d). 

The proof of the following theorem proceeds along the same lines as that  of 

Theorem 2.12. Here we use Proposition 2.3 instead of Proposition 2.2. 

THEOREM 2.13: Let {fn}~-i  C LB(#) with 1 ~ p < oc. Let 

{d( j , / ) :  0 <__ j < l < ~ }  

be a super additive sequence of non-negative numbers, and let q > 1. Define 
A~  ~) as in (5). 

(i) If  ~(n) is a sequence decreasing to zero with 0 < ~(n) _< C~(2n),  such 

that 
oo 

E AV~)~P(n)dq(O'n) < oc, 
n 

n z l  

then ~(n) ~ k = l  fk -+ 0 a.e. and in Lp-norm. Fhrthermore, 
n 

sup ]~(n) E fk[ E Lp(#). 
n > 0  k = l  

(ii) If  in addition 
oo 

E [ ~ ( n  ) - ~(n + X)](A(ndq)dq(O,n)) Up < co, 
n = l  

then ~n~176 ~(n)fn converges a.e. and in Lp-norm. Fhrthermore, 
n 

suP l E ~ ( k ) f k  [ e LB(#). 
n>O k = l  
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Remarks: 1. The following condition was considered in Gaposhkin [17]: 

There exists a positive non-decreasing sequence {~(n)}, satisfying ~(2n) < 
C~P(n) for some positive constant C, such that for any non-negative integers n 
and m 

i m+n akfk 22 m+n 
(14) ~ < ~(n) ~ lakl 2. 

k~-m-]-I k----m-}-1 

If the pair ({an}, {f~}) satisfies (14), then A(n d) < ~(n). 

2. Condition (14) can fail even for orthogonal sequences. Take an -- 1 and 
{fn} orthogonal with {llfnll2} unbounded; (14) does not hold, since q2(1) < cc 

implies supn I lfnll < CO. 

Let [.J and [.] denote the lower and the upper integral parts. For a given 
positive non-decreasing sequence {~(n)}~_ 1 define A(1) = ~(1) and A(n) = 
~--2 flog nJ n k=O a2([2k+l]). The following theorem is simply Theorem 4 of [32]. The 
above explicit formula for A(n) is given in [33] with Q = 1 there. 

PROPOSITION 2.14: Let {fn}n~__l C Lp(#), 1 < p < co, and let {d(j,l)} be a 
super additive sequence of non-negative numbers. Assume that there exists a 
positive non-decreasing sequence { �9 (n) }n~_l such that 

l p 

(15) k= ~:j+l fk P <_ q~P(1 -- j)d(j, l) 

Then for any 0 < nl < n, we have 

nl <l~n k'= 1 

f o r l> j>_O.  

_< AP(n - nDd(nl,  n). 

Example 2.2: The following can be verified by the above formula for A(n). If 
k0(n) = (logn)Z with/~ _> 0, then A(n) < (2 + logn) z+I. If kO(n) = na(logn)Z 
with a > 0 and/~ any real, then A(n) _< Ka,zn~(logn) ~. 

Remarks: 1. Since {~(n)} is non-decreasing, condition (15) yields A(n d) <_ 
~P(n). 

2. The above example shows that when ~(n) = (logn) z with/~ _ 0, Propo- 
sition 2.14 gives no more than Proposition 2.2, although the assumption in 
Proposition 2.14 is stronger. 
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THEOREM 2.15: Let {fn}~=l C Lp(#) with 1 < p < oo. Let {d(j,I), l > j >_ 0} 

be a non-negative super additive sequence, and put ml  = d(O, 1), m~ = d(0, n) - 

d(0, n - 1) for n > 1. Assume that for some a > 0 and fl real, condition (15) 
holds with q~(n) = n~(logn) z. I f  ~n~=2n~P(logn)P(Z+l)-l(loglogn)p-l+~mn 

converges for some e > O, then ~-~--1 fn converges a.e. and in Lp-norm, with 

SUPn>I [ ~-~kn=l fkl �9 Lp(#). 

Proof: The proof proceeds along the same lines as that  of Theorem 2.6, with 

q = 1 and ~(u) = u(P-1)/P(logu) (p-I)/p+~. We use Proposition 2.14 instead of 

Proposition 2.3, where the estimation of A(n) is taken from Example 2.2. | 

3. A p p l i c a t i o n s  to ergodic t h e o r y  

In this section we look at the problem of a.e. convergence of series ~ n n - a a n T n f ,  
(~ < 1, for power-bounded operators on Lp. We apply the previous results in 

order to obtain conditions on {an} and on the function f E Lp, which ensure 

the a.e. convergence for an appropriate a. For contractions on L2 we obtain 

conditions on f in terms of {(Tnf ,  f ) } .  

THEOREM 3.1: Let T be a power bounded operator on Lp(#), 1 < p < c~, and 

f �9 Lp(#) such that for some 0 < fl <_ 1, we have 

1 k-in T k f  p (16) K := n>oSUp ~ ~ < oc. 

Let {bn} be a sequence of  complex numbers such ~nc~=l Ibn - bn+l[ < oo. 
(i) When 0 < fl < (p - 1)/p, for every e > 0 the series 

oo bn Tn f 

Z n l -~ ( logn ) l+ ,  
n----2 

converges a.e. and in Lp-norm; moreover, 

n 

1 Z bkTkf  --4 0 
nl-~(l~ k----1 

a.e. and in Lp-norm. 
(ii) When (p - 1)/p <_ fl <_ 1, for every r > 0 the series 

oo bn Tn f 

Z nl/p(log n)l+l/p+c 
n - ~ 2  
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converges a.e. and in Lp-norm. 
In each of the above cases, the corresponding maxima/funct ion is in Lp. 

Proof." Since {bn} is of bounded variation, it converges. Put  

OG 

v -- Z Ibn - bn§ 
n = l  

Inspection of the proof of Lemma 1 in [10] shows that  if (16) holds, then also 

1 n 
(*) sup n--i-~_~ Z bk Tk f p <_ K '  := K V  + K sup lb~l < co. 

n > 0  k = l  n 

For any j _> 0 the sequence {by+n}~-i is also of bounded variation, and clearly 

_ b ~ n = l  Ibj+n-bj+n+]l < V. Applying (*) to the sequence { j+n}n=l, and noting 
that  K and V, hence K ~, are independent of j ,  we obtain 

(**) ~ = T j b j+kTkf  <_ (sup]lTkllp)(K,)P(l _j)p(1-Z).  
k = j + l  _ k ~ O  

For positive a and ~f let ~(u) = 1/u~(logu)% Using the derivative we obtain 

that  
a + ~f/log e 2 

~(n) - ~(n + 1) _< na+l( logn)  ~ for n _> 2. 

Put  fn = bnTn f  , and for l > j _> 0 define d(j, l) = 1 - j .  
(i) Put  q = p(1 - /3)  > 1. From (**) we obtain that  

A (dq) ~_ (K')P sup I]Tkll p. 
k>o 

Theorem 2.13 applies, with the appropriate a and % 
(ii) Since p(1 - /3 )  _< 1, using (**) we have that  A(~ d) < (K')P supk_>o IITk]l p. 

So, Theorem 2.12 applies. | 

Remarks: 1. The estimate (**) in the proof allows us to use the results of 

Gs and Koksma [14], which yield the same "strong laws of large numbers with 

rates" as in the above theorem; in case (i) we use [14, Theorem 5], and in case 

(ii) we use [14, Theorem 3]. 

2. The case bn - 1 was treated in Gaposhkin [18, Theorem 3] when p = 2 

and T is unitary on L2, in Derriennic and Lin [11, Corollary 3.7] when T is a 

Dunford-Schwartz operator, and in Weber [52, Proposition 1.6] in the general 
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case treated here. Applying Kronecker's lemma to the series in (i) (with bn =- 
1) yields the same "strong law with rate" as Weber for /3 > ( io -  1)/p, but 

our rate obtained directly in (i) is better; the rate in the "strong law of large 

numbers" obtained from (ii) by Kronecker's lemma is the same as Weber's when 

/3 = (p - 1)/p, but worse than Weber's (in the power of the logarithm) when 

/3 < ( p -  1)/p. For T Dunford-Schwartz, our result is better than [11] when 

/3 < (p - 1)/p. For T unitary, Gaposhkin's results are better than ours. 

3. Sublinear growth conditions on the norms {11 ~k=l  Tkfll} were used also 
in [10] and [9] to obtain for f the pointwise ergodic theorem with rate, as well as 

a.e. convergence of the one-sided ergodic Hilbert transform. Our present results 

are more precise. 

For an L2(#)-bounded sequence {fj}j~176 and any integer n > 0 we define 

(I)(n) := sup f fjfj+nd# < oo. 
j > l  J 

Clearly, (I)(n) _< supj>l Ilfjl[~. 
Remarks: 1. L2(#)-bounded sequences {fj},  with f f jd# = 0 and En~176 r 

< oc, were considered in Gaposhkin [19], and were called weakly correlated 
sequences. 

2. For an isometry operator V, f E L2(#), and fn := Vnf  (i.e., {fn} is wide 

sense stationary), we have ~(n) = I f f~ffod#i. 

The following lemma appears in Gaposhkin [16, Lemma 1] (see also Serfiing 

[43, Lemma 2.1], Weber [51, Lemma 14]). 

LEMMA 3.2: Let {an} be a sequence of complex numbers, and let {fn} be an 
L2(#)-bounded sequence. Then for any n, m >_ 1 

n 

(17) akfk --< 4 ) ( 0 ) + 2 E ( I ) ( k )  E [ak[2" 
k = m + l  k----1 k = m + l  

COROLLARY 3.3: Let {fn} be an L2(#)-bounded sequence, and put an = 
2 n ~b(O) + ~k=l ~(k). Let {an} be a sequence of complex numbers. The series 

E %1 anfn converges a.e. and in L -norm, with SUPn>o I EL1 akfkl in 
in either of the following cases: 

(i) on = O(n~(logn) ~) for some a > 0 and/3 real, and the series 

c o  

E [an [2na (log n) 13+1 (log log n)x+e 
n-----2 
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converges for some e > O. 
(ii) an = O((logn) z) with fl >>_ O, and ~n~176 lan]2(logn) ~+2 converges, 

Proof'. Put  d(j, l) l 12 : Ek=j+l lak and p = 2. 
(i) By Lemma 3.2 we obtain (15) for {anfn}, with 

�9 2(n) = an = O(n~(logn)Z). 

The result follows by applying Theorem 2.15. 

(ii) By Lemma 3.2 we obtain (9) for {anfn}, with q = 1, mn = lan[ 2, and 

An = an. Theorem 2.9(i) yields the result. | 

Remarks: 1. Obviously an = O(n), but convergence of 

E [an [2n log  n(log log n)1+~ 
n 

implies Y]n [an[ < oc by Cauchy's inequality, so the interest in (i) is when a < 1. 

2. Without referring to the order of an, Theorem 2.90) yields the desired 

convergence when En [an[2a2n(l~ 2 < ~ .  This, with a2n replaced by an, 
was obtained by Gaposhkin [16, Theorem 1]. Note that  this is not important 

for the classes of {~(n)} considered there. 

3. Part  (ii) was proved in [16, Corollaries 1 and 2]. A better result (smaller 
power of log n) for part (i) was obtained in [16, Corollary 3], under a mild 

additional condition on ~(n).  

4. In the stationary case, Gaposhkin [16] proved that under a given rate of 

decay to zero of {~(n)}, the convergence of ~nc~=l lan[2a2(log n) 2 is an optimal 

f condition for the a.e. convergence o ~ = 1  anfn. Note that for {fn} orthonor- 
real, Corollary 3.3(ii) becomes the Menchoff-Rademacher theorem. 

Let T be a contraction of a Hilbert space 7-/. Define Tn := T n for n _> 0 and 

T,~ := (T*)M for n < 0. Then {(Tnf, f ) }  is a positive semi-definite sequence [39, 
Appendix,w (see also [27, Proposition 3.1, p. 94]), so by Herglotz's theorem 

it is the Fourier coefficients of a positive measure uf on the unit circle F. By 

the unitary dilation theorem of B. Sz. Nagy [39, Theorem III, p. 469] (the proof 

of which uses the positive semi-definiteness of {(Tnf,  f /}) ,  there exist a larger 

Hilbert space Nt, an orthogonal projection P~t on 7-/, and unitary operator U 

on N'  such that for every g E 7-/' and every integer n we have TnPng = pnUng.  

For f C 7-/, the above identity yields 

(Tnf, f )  -- (p~Unf ,  f )  = (U~f, P ~ f )  = (Unf,  P ~ f )  = Iun f ,  f ) .  
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By the spectral representation theorem for unitary operators, v$ is the spectral 

measure of f with respect to U, with Fourier coefficients {(Tnf, f )} .  

Definition 3.1: For a contraction T on 7 / a n d  f E 7/, we call v S the u n i t a r y  

spe c t r a l  m e a s u r e  of f (with respect to T). When vf is absolutely continuous, 

we say that  f has spec t r a l  dens i ty ,  which is duf/dA. 

Remark: There are cases where all that  is needed is to extend T to an isometry, 

i.e., we need an isometry dilation. If V is an isometry dilation of T, then we 

still have (Tnf, f )  = (Vnf,  f )  for all non-negative n and f E 7/. 

PROPOSITION 3.4: Let {an} be a sequence of complex numbers. Let T be a 

contraction of L2(#) and f E L2(#). For any integers m ,n  >_ 1 we have the 

following: 

(i) II Z-~k=m+l akTkfll~ -- < [1111122 + 2 ~k=l~n-1 i(Tkf, f)l] E~+~+I lakl 2" 
(ii) For 1 < u < oo and v := u/(u - 1), 

n_i ] 
m~n akT~f ~ [llfll~ +2nl/.( ~l(Tkf'f>lv )~/v ~+nZ 

k=m-[-1 -- k=mT1 
ak [2. 

(iii) If  f has spectral density in Lu(dA), 1 < u < oo, then 

m~n akTkf i < dvf ( m~n [ak[2u/(u+l) ) 
k=m+l -~ -  L~(~) k=,~+l 

m+n 
< nl/ .  d-s ~ i~kl ~. 
- dA L.(d)Q k=mJrl 

(~+1)/~ 

(iv) / f  f has bounded spectral density, then 

m~"n akTkf  2 2 dvl io~(d~) m+n <- d~ ~-" lakl=" 
k=m+l k = m + l  

Proof: (i) We first prove it when T -- V is isometry. We take r  = ](vnf, f)] 

and fn = v n f ,  hence (i) follows (for V) by Lemma 3.2. 

Now for T a contraction, let V be the isometry dilation of T, and let Pn 

be the corresponding projection. By the discussion preceding the proposition, 
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(Tn f , f) = (vn f , f), so we have 

m+n akTkf 2 2 / m+n ) i m+n akVkf 22 
k= 1 \ k=m+l k = m + l  

n--1 rain 
-< [llfll~ + 2El ( vk s ,  f)l] lakl 2 

k = l  k=m+l 

= Ilfll~+2~-'~l(Tkf, f)l ~ lakl 2. 
k = l  k=m-t-1 

(ii) Using HSlder's inequality 

n-1 n-1 ,~ 1/v 
El (Tk f ,  f)l <_nl/U(El(Tkf, f)lv] ' 
k = l  " k = l  " 

hence (ii) follows from (i). 

(iii) In the proof of (i) we could use the unitary dilation U of T instead of 
using the isometry dilation, so it suffices to prove for U. Denote the spectral 

density h = dvf/d)~ E L~,(dl) When u < ec, the spectral theorem and HSlder's 
inequality yield 

m+nE akUk f 2 2 = fr m~__~n ak/~k 2h()~)d A 

k=m+l k=m+l 

( j f F r a + n  ,2u/(u-1),(u--l)/u 
< Ilhll~o(dx) ~ ak~ ~ ) da. 

k = m + l  

Hence 
m + n m~n 
Y~ a~UkS < Ilhll[(~(d~) ak~ k 

k=m+l I I  2 k=m+l Lq (dA) 

with q -- 2u/(u - 1). We now apply Proposition 2.11(i-ii) with p = 2. 

(iv) Again we prove only for U unitary. Put h(A) = duf/dA. The spectral 
theorem now yields 

mTn 2 2 
,, k Y + l  akUk f 2 = / m~n ak ~k h(A)dA <- 'lhll~r m~_~n lakl 2. 

k=m+l k=m+l 

Remark: For T unitary, (i) and (iv) appear (without proof) in Gaposhkin [17]. 
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PROPOSITION 3.5: Let {an) be a sequence of complex numbers, and let 1 < 

u < c~ with dual index v := u/(u  - 1). Let T be a contraction of L2(#) and 

f E L2(#). For any integers m, n >_ 1 we have the following: 
(i) 

mq-n mq-n n-- 1 
II ~ akTkfll~ <--n~/~( ~ lakl~)2/=(llfll~V + 2~l(Tkf, f>lV) 1Iv. 

k=mq-1 k=rnq-1 k=l 

(ii) / f  i < u _< 2, and f has spectral density in Lu(dA), then 

m+n 2 f m+n ~ 2/u 
(18) k=m-[-1E akrk f  2 -- < 21/v dvfldz~ Lu(d~, n l / v  ~ k ~mq_l_ laklu) " 

Proo~ (i) We first prove the proposition when T = U is a unitary operator. 
Using HSlder's inequality 

m~n akUk f 22 m+n = E akcti(Ukf'Uif) 
k=mq-1 k,i=mq-1 

mq-n 
k=m+lm~n[ak[u) 2/U(k,i=~m+l [(uk-i f ' f )[v)l /v  

m+n 2/u 
= k_~m+ 'ak' u) (kn, E=l'(Uk-~f'f)[v) ~/~ 

~-- nl/V E lakP ](Ukf'f)]" 
k=m-I-1 k=--(n--1) ( rn~n )2 /u (  n--1 x 1/v 

--_nl/v lak[ u Ilfll2~v--k2El(ukf, f)[ v) . 
k=mq-1 k=l 

1/v 

= P~t E akUkf ~-- E akUkf 
k:m+l " " k=mq-1 " k:m-t-1 112 

~-- nl/V ` k=~m+l [ak]U) 2/u ( ]'f]'~v -t- 2 E ](Tk f ' f)[v) l/v" 

(ii) Follows from (i) by the Hausdorff-Young theorem. | 

Now for T a contraction, let U be the unitary dilation of T, and let PT~ 

be the corresponding projection. By the discussion preceding Proposition 3.4, 
(Tnf,  f )  = (unf ,  f )  for n _> 0, so using the previous calculation we have 
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Example 3.1: For f in L2(F, dA), where dA is the Lebesgue measure on the unit 

circle F, define Uf(A) := Af(A). Then U is unitary on L2(F, dA). Fix 1 < p _< cr 

and 0 <_ g e Lp(dA), and let f = ~ E L2; clearly (ukf ,  f )  = fAkg(A)dA, so 

the unitary spectral measure of f with respect to U is absolutely continuous 

with density g. 

Example 3.2: Let {gk : - c ~  < k < ~ }  C ?-/ be an orthonormal sequence; 

then gn ~- Ungo, where U is the bilateral shift on the closed subspace generated 

by {gk}. For any {ck} C ~2(Z) define the m o v i n g  ave rage  sequence fn := 

~k~=_~ Ckgn+k, where the series is convergent by the Riesz-Fischer theorem. 

Clearly fn = Unfo (so {fn} is a well defined wide sense stationary process). 

Denote by v the spectral measure of fo with respect to U; then dv/d)~ = [a(A)l 2, 
where a(A) := ~-~k~___~ ckA k is defined in L2(d)~)-norm by Riesz-Fischer, and 

hence d~/dA E LI(dA). If we impose {ck} C 61, then a(A) is a continuous 

function o n F ,  sodv /dA E L2(dA). When {ck} E gp, l < p <  2, thena(A)  E 

Lq(dA) (where q = p / ( p -  1) > 2), by the Hausdorff-Young theorem, so dv/dA E 

Lq/2(d/~), and with u = min{q/2, 2}, Proposition 3.5(ii) applies to V and f = f0. 

COROLLARY 3.6: Let {an} be a sequence of complex numbers, and let 1 < u < 

~x) with duaJ index v. Let T be a contraction of L2(#) and f E L2(#). The 
series ~n~=l anTnf  converges a.e. and in L2-norm, and sup~>l I ~  n ak Tk f[ k=l  
is in L~ (#), if for some e > 0 any of the following sets of conditions is satisfied: 

(i) }--~.n~=l [a~[2n[l+z(~-l)]/~logn(loglogn) 1+~ < ~ and ~ = 1  [(Tkf, f)[ v <- 

Cn ~, for some 0 <_ ~ < 1. 

(ii) ~n~__l Jan [~n (1+3)(~-1)/2 (log n) ~/2 (log log n) ~/2+~ < (x~ and 

n 

E ](Tkf'f}[v <- Cn~' 
k : l  

for some O <_ 7 < 1 and l < u < 2. 

(iii) EnC~_l [an[ 2u/(u-kl) < (X) and f has spectral density in Lu(dA). 

Proos (i) Put  d(j, l) l = E k - - - - j + l  [ak[ 2 and p = 2. By Proposition 3.4(ii), (15) 
holds for {anTnf} with ~2(n) _< C'n 1/~+~/~. Theorem 2.15 yields the result. 

(ii) By Proposition 3.5(i), (9) holds with An = C'n (~+l)/v, p = 2, mn = lanl u, 

and q = 2/u. Since 1 < u < 2, we have q > 1 and Theorem 2.9(iii) applies. 

(iii) By the first inequality in Proposition 3.4(iii) we obtain (10) with p = 2 

and t = 2u/(u + 1) < 2. Hence Proposition 2.10(ii) applies. | 
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Remarks: 1. For any u > 1 and 3' = 0, the condition on {an} given in (i) or in 

(ii) implies the condition in (iii). Indeed, by HSlder's inequality 

Z [anl2U/(u+l) ~ Z lanl2n'~ l~176176 
n = l  n = l  

• _ n(logn)~(loglogn) "(1+~) ] �9 

Similarly, the condition in (ii) with 3' = 0 implies (iii). 

2. If 1 < u <_ 2 and f has spectral density in Lu(d.k), then, as mentioned 

before, ~ - 1  [(Tkf, f)] v converges. The previous remark shows that  in this case 

(iii) yields a better result (weaker assumptions on {an}) than (i) or (ii). 
oo 3. If 2 <_ u < ~ and ~ k = l  [(Tkf, f)[ v converges, then by the Hausdorff- 

Young theorem f has spectral density in Lu(dA). By Remark 1 above, (iii) 

yields a better result than (i). Thus, for u > 2, (i) is relevant only for 3' > 0. 

4. By the computation in Remark 1 above, the condition o n  {an} given in 

[23, Corollary 3.3(i)] (for unitary operators) when f has spectral density in Lu 

implies the condition in (iii). 

5. (i) and (ii) are equivalent for u = 2, but for 1 < u < 2 and 3' = 0, 

(ii) does not imply (i). Specifically, for any 1 < u < 2 there exists a positive 

sequence {an } such that  the s e r i e s  ~-~nC~_l [an lUn (u-l)~2 (log n)u/2 (log log n) u/2+e 
converges, but ~n~=l l an 12n 1/~ log n(log n log n) x+~ diverges. 

Define an = (2k) -U2u for n = 2 k, and an = 2 -n  otherwise. We have 

oo 

Z lanI2nl/Ul~176176 = ~ k ( l ~  = c~, 
nE{2 k } k = l  

so (i) does not hold. On the other hand, 

Jan ]~n (~-1)/2 (log n) ~/2 (log log n) ~/2+~ 
nc{2k} 

= Z(2k)-l/2(2k)(u-1)/2kU/2(logk)U/2+~ = k~/2(logk) ~/2+~ 
k=l k=l (2(2-u)/2)k 

The last sum converges, since for u < 2 the denominator has exponential growth. 

The convergence of the series is not affected by adding the convergent series 

~n~{2k} ", so (ii) holds. 

6. Recall that  for any T power-bounded on L2, convergence of 
oo 

Z lanl2n(l~ n)2 
n = l  
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implies a.e. convergence of ~ anTnf ,  by Remark 6 to Proposition 2.11. In each 

case of Corollary 3.6 the power of n in the series is less than 1. 

We next show that  when u = oo, Corollary 3.6(i) remains true (only) when 

7 > 0 .  

COROLLARY 3.7: Let {an} be a sequence of complex numbers. Let T be a 

contraction of L2(#) and f C L2(tt). The series ~n~__l anTn f  converges a.e. and 
in L2-norm, and SUPn>I [ ~ k = l  akTkf} is in L2(#), if  any of the following sets 
of conditions is satisfied: 

(i) En~=x ]a~[2n~logn(loglogn) 1+~ < oo and E~.=I [<Tkf, f>[ <- Cn~, for 
s o m e e > O a n d O < 7 <  1. 

(ii) ~n~=l la~12(logn): < c~ and f has bounded spectral density. 

Vroob (i) Put  d(j, l) = )-~k=j+l lakl 2 and p = 2. By Proposition 3.4(i), (15) 

holds for {a~Tnf}  with k~2(n) < C'n ~. Theorem 2.15 yields the result. 

(ii) By Proposition 3.4(iv), (9) holds with An = C ,  p = 2, q = 1, and 

m n :  Jan[ 2, so Theorem 2.9(i) applies. | 

Remarks: 1. If y']n~__l I(T~f , f ) l  < co, then the unitary spectral measure of 

f is absolutely continuous with continuous Radon-Nikodym derivative. Hence 

the spectral density of f is in L~(dA) for any 1 < u < c~, and we can use either 

Corollary 3.7(ii), or Corollary 3.6(iii) with some u < cc large. These two results 

are not comparable. When an = 1/(v/-~log 2 n), only Corollary 3.7(ii) applies; if 

we define a2k = 1/k and an = 0 for n not a power of 2, then Corollary 3.6(iii) 
applies with any u > 1, while )-~n [a~[ 2 l~ 2 n = co. 

2. Let {fn} C L2(tt) be orthonormal, and let T be induced on L2 by the 

shift, i.e., Tg = 0 for g C {f~}• and Tfn  = fn+l for n _> 1. Applying part 

(ii) to T with f = f l  yields the Menchoff-Rademacher theorem. Menchoff's 

example in this context shows that  when 7 = 0, (i) is no longer sufficient for 

a.e. convergence of ~ n  a~f~. Applying Corollary 3.6(iii) yields Menchoff's [31, 
Theorem 12]. 

Example 3.3: On L2(F, u) define Vf(A) = Af(A). Then f [Vf[2du = f [f[2du, 

and hence U is a unitary operator (with U*f(A) = Af(A)). The sequence 

X.(A) := U~I = A n is wide sense stationary with (Xn,Xo) = fA~du,  so its 

spectral measure is u. 

This example exhibits a wide sense stationary process with any pre-assigned 

spectral measure. It is a concretization of (the general) Example 4 in Doob [12, 
p. 479]. 
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Definition 3.2: Let {an} be a sequence of (complex) numbers, and let 1 _< t < 
1 n oc; we say that {a~} E Wt if SUPn>0 n ~ k = l  lakl t < oc. If {an} is bounded we 

say that {an} E W~.  For t > s > 1 we have Wt C W~ C W1. 

COROLLARY 3.8: Let {an} E Wt, 1 < t <_ 2 be a sequence of  complex numbers, 

and let 1 < u < ec with dual index v. Let T be a contraction of L2 (p) and 

f E L2(#). The series ~n~__2 a~Tnf /n~( logn)Z( log logn)  ~ converges a.e. and in 

L2-norm, with s u p s > 2 1 ~ = 2  akrk  f / k~( l~176176 k)6l in L2(#), for a, fl, 

and 5 determined according to the following conditions: 

(i) If  ~ k = l  I(Tk f , f ) r  _< Cn'Y for some 0 <_ ~/ < 1, then 

a = [ l + 7 ( u - 1 ) ] / 2 u + l / t ,  ~ = 1 ,  and 5 > 1 .  

(ii) / / c E ~ = I  I(Tkf ,  f ) l  <_ Cn ~ for some 0 < 7 < 1, then a = 3 ' /2+  1/t, /~ = 1, 

and (f > 1. 

(iii) I f  ~ = 1  I(Tkf ,  f)[ <- C(l~ ~ for some ~ > O, then a = 1/t, fl = 

(3 + ~)/2, and 5 > 1/2. 

(iv) I f f  has bounded spectral density, then ~ = 1/t, fl = 3/2, and 6 > 1/2. 

Proof.." The method of proof of [10, Lemma 2] can be used to show that if 

{an} e Wt then EnC~__l lanl2/n ~/t logn(loglogn) 1+~ < ec for every e > 0. Put  

bn = an/nC~(log n) ~ (log log n) 6, and obtain the values of (~, fl, and (~ by applying 
to {bn} Corollary 3.6(i) for (i), Corollary 3.70) for (ii), Corollary 3.3(ii) for (iii), 

and Corollary 3.7(ii) for (iv). | 

Remarks: 1. Under the assumption ~ n l ( T n f ,  f ) l / ( logn)  n < ~ ,  Gaposhkin 

[16, Theorem 5] showed, for an - 1, that ~ n  Tnf /x / -~( l~  (a+n)/2 converges 
a.e. The assumption is stronger than our assumption in (iii), and the convergence 

statement is better. 

2. In Example 3.1 take 0 _< g C L2(dA) unbounded. Then f := x/g satisfies 
e r  _ g 2 , e r  E k = l l ( T k f ' f ) l  2 < II IIL2(dX) but since g is unbounded, E k = l l ( T k f ' f ) l  = ~ "  
3. Let T be a symmetric (i.e., T* = T) contraction on L2. If f E L2 satisfies 

En~__ll(Tnf, f ) l  < oo, then EnlITnfl l  2 < c~, so  EnITnf (x ) l  2 < oc  a.e. For 

{an} E Wt, 1 < t _< 2, and any 5 > 1/2, Cauchy's inequality yields 

lanTnf(x) l  
E nl / t  (log n) 1/2 (log log n) 6 
n=2 

< n2/ t logn( loglogn) l+ ~ ITnf(x) l  2 < co, 
n=2 n=2  



Vol. 148, 2005 E X T E N S I O N S  OF T H E  M E N C H O F F - R A D E M A C H E R  T H E O R E M  73 

which gives a better rate than the general result in (iv). 

LEMMA 3.9: Let 0 be a one-sided shift of ~n ergodic Markov chain {~n} with 
invariant initial distribution p and Markov operator T. For f 6 L2 define 
Xn = f(r Then {Xn} is strictly stationary and E(X~Xo) = (Tnf, f). 

Proof'. Since Xn = f ( ~ )  = Xo o O n, the sequence {Xn} is strictly stationary. 

Since f 6 L2(#), we have {X~} C L2(? , ) .  We have 

E(XnXo) = f f(~n)f(~o)C~t,= f I f  f(~n)f(~o)a'Fz]dlz 

= f T'~f(x)f(x)#(dx) = (Tnf, f), 

and the result follows. | 

Remarks: 1. With the help of the lemma, we can make assumptions on 

{(Tnf, f}} and apply the previous results to the operator induced by the shift. 

2. The Lemma applies also to the 2-sided shift. 

Exmnple 3.4: On (-Tr, 7r] there exists a finite measure v, singular with respect 

to the Lebesgue measure, such that  its Fourier coefficients {P(k)} tend to zero 

[54, Theorem 10.12, vol. II, p. 146]. It is not hard to modify v to be defined on 

the unit circle F, and concentrated on 7r/2 < arg A _< ~r. 

On L2(r, ~) we define Uf()~) = Af()~). For v-almost every A we have I1 - A  I > 

x/2, so clearly I - U is invertible on L2(v), and g(A) := 1/(1 - A) 6 L2(v). As 

in Example 3.3, we take the stationary sequence Unl  = A n, which has spectral 

measure v. Since (Unl ,  1) = P(n) --+ 0, we have Unl --+ 0 weakly by Foguel 

[13]. Since (I - U)g = 1, and g is in the closed subspace generated by {Unl} 

(see Lin-Sine [28]), also Ung -~ 0 weakly. Hence y]k~__o Ukl --+ g weakly, so 
oo k c~ ~k=o(U 1, 1) converges; but since v is singular, Y]k=O I( Ukl, 1}1 ~ = oo. The 

example shows that  the following conditions can live together: 

(i) f 6 (I - U)L2(v). 

(ii) The spectral measure of f is singular, so ~ ~  0 I(Ukf, f}l 2 = c~. 
(iii) oo k ~k=0 (U f , f )  converges, but only conditionally, and in particular (Ukf,f) 

--+0. 

4. R a n d o m  power series of  L2-contract ions 

In this section we treat a.e. convergence of random power series of contractions 

in L~ spaces. Norm convergence of such series was considered in [36]. Let 
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{fn} be independent random variables on the probability space (gt, #). For a 

contraction T on L2(Y, ~r) of some measure space, we define the (formal) random 

power series of T by ~k~__l fk(x)Tkg, g E L2(Tr). We are interested in having 

for a.e. x the a.e. convergence of all random power series of L2-contractions. 

To be more precise, we want a universal null set in f~, such that when x E 

is outside this null set, for every contraction T on L2(Tr) and g E L2(Tr) the 

series ~ _ 1  fk (x)Tkg converges 7r-a.e. and, in particular, for every orthonormal 

sequence {gk} C L2(Tr) the series Ek~176 fk(x)gk converges 7r-a.e. By [46] we 

must have  En~176 Ifn(x)[21ognlog+(1/[fn(x)[) < ec a.e., and if I/n(x)l is a.e. 
non-increasing (e.g., fn(x) = cnen(x) with [en(x)] - 1 a.e. and Icnl decreasing) 

then [47] necessarily }-~n~176 [fn(X)]2(logn) 2 < cc a.e. 

Given complex numbers co, a l , . . . ,  an and a unitary operator U on a Hilbert 

space, the spectral theorem yields that I] ~ = o  ak Vkll < maxl~l=l I ~ = o  ak Akl. 
The unitary dilation theorem yields that  for every contraction T on a complex 

Hilbert space we have 

n akT k ] ~ . (19) E < max akA k 
k=0 --I;q--1 k=0 

As (19) suggests, application of the previous methods requires good estimates 

on C(F)-norms of blocks of the generating random Fourier series ~ n  fn(x) Ak" 
Throughout this section our (complex valued) random coefficients {fn} will be 

independent. 

PROPOSITION 4.1: Let { f n } be symmetric independent complex valued random 
variables on (~, #). Then (with 0/0 interpreted as 1) 

{maxl~i=l,  z k s }  Ll(g) Ek----j+l  fkA [ 
sup sup exp L < ec. 
j_>o l>j log(l + 1)(•k=j+l IAI 2) 

Hence for a.e. x C f~ we have 

maxp'l=l I l Ek----jq-1 fk(X)'~kl 
(20) sup 1/2 < ec. 

z>J>~ x/log(l + 1) ( z ) - E k = j + l  Ifk(x)l 2 

The proposition was proved by Weber [50] (using the metric entropy method). 

THEOREM 4.2: Let 1 < p <__ 2, and let {fn} C Lp(ft,#) be a sequence of 
independent centered random variables. If 

co 
(21) IIAIl (logn) < (p = 2), 

n= l  
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o r  

(22) 
oo  

IlY~llg(log n)P(log log n) p/2+r < oc t ' o r s o m e e > 0  ( 1 < p < 2 ) ,  

then there exists a subset f~* C f~ with #(f~*) = 1, such that when x E f~*, for 
every contraction T on a space L~(Tr) and any g E L2(Tr), the series 

o o  

(23) E fn(x)Tn g converges 7r a.e. 
r~-=l 

When {fn} are symmetric, for x E f~* there is a constant Kx < oc, determined 

only by {A(x)} (and p), such that 

(24) sup] ~fk(x)vka 2 ~- h~llgll2" 
n>_l k = l  

E ~* we have In the general case, if zr is a probability, then for x 

SUPn>_a I E2=1 fk(x)Tkgl in LpQr). 

Proof." We first prove the case that  each fn is symmetric. By Beppo Levi's 

theorem, condition (21) or (22) implies, respectively, that  for p a.e. x E f~ we 

have 

O(3 

(*) ~ IL~(x)12(l~ a < 
n : l  

o r  

(**) 
oo 

IA(x) l ~(log ~)p(log log n) p/2+" < ~ .  
n----1 

By symmetry of {f,~}, Proposition 4.1 applies. We define f~* as the set of x for 

which either (*) or (**) (according to p = 2 or 1 < p < 2), together with (20), 

hold. Fix x E f~*. Given a contraction T on L2(Tr) and g E L2(rr), (19), (20), 

and I1 lie2 _< I1" lie. yield 

l 

f k ( x ) T k 9  2 
k=j+l 

l 

< Ilgllz max I ~ A(x)'Xk 
- -  I X l m I  k=j+l 

l 

<_Hgll2C~/log(l+l)( E tfk(x)lP) 
k = j + l  

1/p 
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Hence for x E f~*, (9) is satisfied by {fn(x)T~g} C L2(Tr), with mn= Ira(x)] p, 
= Ilgll2C~ l o g ( n  + p = q = 2/p > 1, and An 2 2 1). When 2, using (*) we have 

(x) o o  

Z A2n(l~ <- CIIgll~C2 ~'~(logn)31A(x)l 2 < ~ .  
n = l  n = l  

Hence Theorem 2.9(i), applied to {fn(x)T~g} C L2Qr), yields the 7c-a.e. con- 

vergence of the series ~n~=l f~(x)Tng and the estimate (24) for the maximal 

function of the partial sums. 

When 1 < p < 2, using (**) and q = 2/p we obtain 

o o  

Z A12/q (log n) 1/q (log log n)l/q+~m~ 

o o  

< C IIgll~Cg Z (log n)P (log log n)P/2+~ I fn (x)l p < ~ ,  
n : l  

and now Theorem 2.9(iii) applies. This concludes the proof when {fn} are 

symmetric. 

We now prove the general case of {fn} centered. Let { L )  defined on (~' ,  p') 

be an independent copy of {fn}, and put hn(x,x') = fn(X) - f~(x') on 

(f~ • ~ ' ,  # • #'). Then hn is symmetric with Ilhnilp < 2]Ifnil p, so applying to 

{h~} the result for the symmetric case proved above, we obtain a set E C f~ • 9t J 

with # • # ' (E)  = 1, such that  for fixed (x, x I) C E and any contraction T of 

L2Qr) and g E L2(~r), the series ~-~n~=l hn(x,x')T'~g converges 7r a.e. Define 

Ex = {x' C f~': (x,x ' )  C E} and put ~t* = {x �9 f~: # ' (Ex) = 1}. By Fubini's 

theorem, for tt a.e. x we have #'(Ex) = 1, so #(f~*) = 1. 

Now fix x �9 ~*. Let T be a contraction on L2(Y, 7r) and g E L2(Tr). In order 

to show that  ~n~=l fn(x)Tng converges 7r-a.e., take any x t �9 E ,  and consider 

the identity 

N N N 

(* * *) Z fn(x)Tng = Z hn(x'x')Tng + Z fn(x')Tng" 
n = l  n = l  n = l  

As N --+ c~, the first sum on the right hand side converges Ir-a.e., since (x, x') E 
E. We show that  x' E Ex can be chosen such that  the second sum is also 7r-a.e. 

convergent. 

As mentioned in the introduction, we may assume that  7r is a probability, 

so for p _< 2 we have ]lTngilLp(~) <_ ]]TngIIL2(~) <_ ]lgIiL2(~)" The appropriate 



Vol. 148, 2005 EXTENSIONS OF THE MENCHOFF-RADEMACHER THEOREM 77 

condition (21) or (22) yields 

oo oo 
Z < P ' p IIf�88 _ IlgllL.( .)  ~'-~ I < 
n = l  n = l  

so by Beppo Levi's theorem we have that  the series y~'~n~__l I If~[Ip pITng(y) I p con- 

verges 7r-a.e. Hence for zr almost every fixed y E Y, the Marcinkiewicz-Zygmund 

theorem [30, Theorem 5'] (see [8, p. 114]), applied to the independent cen- 

tered sequence {f�88 C Lp(#'), yields that  the series ~n~=l f�88 
converges #~-a.e. By Pubini's theorem, we have that  for #~-a.e. x ~ the series 
~oo . ,  tx,,T ~- n=l ln~ ) y converges 7r a.e. Since #r(Ex) -- 1, this shows that  we can find 

x ~ E Ex for which also the second term on the right hand side of (* **) converges 

r-a.e.,  and the zr-a.e, convergence of ~n~__l f~(x)Tng when x G f~* is proved. 

Fix x E ft*. Let (y ,  zr) be a probability space, T a contraction on Le0r), 

g G L2(r) ,  and y G Y. Since (T~g(y)fn} are centered independent in Lp(#'), 
the inequality of [5] yields 

E <_2 E [Tkg(Y)[;[[g[[P f o r l > j _ > O .  
k=j+ l  k= j+ l  

l Hence for d(j, 1) := 2 k = j + l  Irkg(Y)lPllfs we have A~ ) _< 2 for every n. By 

Theorem 2.4, with q = 1, we have 

i I k 
sup fs )T g(y) dp'(x') < C (logk)Pllf'kll~lTkg(y)l p. 
n > l  k : l  k = l  

Integrating the above with respect to zr and using Fubini's theorem we obtain 

/[/ p .] sup y~.f;(x')T~g(~) d~(y) d.'(~') <_ C IIfs 
n>l  k=l k=l 

Since IITkgllp _< Ilgl12 (for p < 2 because 7r is a probability), the appropriate 

condition (21) or (22) now implies convergence of the last series. Hence for a.e. 

x'  we have f suPn_> 1 I E k = ,  fs < oc, and x'  can be chosen in 

E~ since #~(Ex) = 1. With this x ~ the suprema of the sums on the right hand 

side of ( ,  * *) are both in Lp(zr), which proves the assertion. | 

Remarks: 1. When p = 2, we have in the general case s u p ~  I E ~ _ - I  fa(x)Tagl 
in L20r) even if ~r is not finite. 

2. By considering for each A E F the "rotation" it induces and applying the 

theorem to g(z) = z, we obtain that  (21) or (22) implies that  for a.e. x E f~ the 
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random Fourier series ~ n  fn(X) "~n converges for every A. When {fn} are sym- 

metric, Billard's theorem [25, Theorem 3, p. 58] yields a.e. uniform convergence 

of the series. In this case, (19) yields that  for a.e. x the series ~~176 fn (x )T  ~ 

converges in operator norm for any contraction T on L2 (uniformly in all con- 

tractions). 

3. For p = 2 and fn = Cnen (throughout the paper {en} is a Rademacher 

sequence defined on the unit interval), (21) becomes ~n~__l [Cn[2(logn) 3 < oo. 

Rosenblatt  [40, Theorem 11] used a stronger assumption, namely 

oo 

E [Cnl2X/~(l~ < oo 

for some 5 > 0, in order to prove the assertion of the theorem. 

4. For 1 < p < 2 and fn = CriCk, (22) becomes 

0~ 

E ICn I p(l~ n)P(log log n) p/2+~ < oo. 

This condition and E n = l ~ 1 7 6  [Cn[2(logn)3 < oC are not comparable. The sequence 

cn = 1/(v/-nlog 3 n) satisfies only the second condition, while cn = 1/(k 2) for 

n -- 2 k and cn = 0 otherwise satisfies only the first one. 

COROLLARY 4.3: Let 1 < p <_ 2, and let {fn} C Lp(~ ,#)  be a sequence 

of independent centered random variables with SUPn [[fn[Ip < (x). Then there 

exists a subset ~* C f~, with #(f~*) = 1, such that when x E f~*, for every 

contraction T on a space L2Qr) and any g E L2(zc), the series 

o ~  

(25) fn(x)T g converges a.e., 
n=2 nl/p(l~ n)~ (log log n)~ 

with/3 = 2 and "~ > 1/2 when p = 2, and with/3 = 1 + 1/p and ~ > 1/2 + 1/p 

when 1 < p < 2. 

Proo~ Apply the previous theorem to {fn/nl /p(logn)Z(loglogn)~}.  | 

Remarks: 1. The convergence (25) implies (e.g., [11, Lemma 2.19]) that  for 

any a > 1/p 

(26) ~ fn(x)Tng converges ~r a.e. 
?-tc~ 

n : 2  
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2. For p = 2 and under the additional assumption that  {f~} are symmetric 

identically distributed, Boukhari and Weber [7, Corollary 3.3] proved (26), and 

also (25) with/~ > 2 and 7 = 0. M. Weber has informed us that  when p = 2 

the general symmetric case can be deduced also from the main result of [7]. 

THEOREM 4.4: Let {fn} be a sequence of i.i.d, centered random variables on 

(f~, p). If f ]fl l log + ]fl Idp < ~ ,  then there exists a subset ~* C f~ with #(f~*) = 
1, such that when x E fl*, for every contraction T on a space L2(Tr) and any 
g E L2(Tr), the series 

(27) ~ fn(x)T~g converges ~ a.e. 
n 

n--1 

with sup~>1 ] ~ = 1  fk(x)Tkg/k[ e L2(Tr). 

When {fn} are symmetric, then the above assertions are true if we assume 

only f [f,I log + log + Id/  < oo. 

Proof: We start  with the general centered case. Since {fn} are assumed iden- 

tically distributed with f l  E LI(p) ,  we have ~n~__l P{lfn] > n} < oc, so for a.e. 

x E f~ we have ]fn(X)[ > n only for finitely many n. Hence it is sufficient to 

prove the assertions for {fnl{lf,~l_<n}} instead of {fn}. 

Put  hi := fll{Ifl]_<l } and hn :-- fnl{IL~l<_n/log3n} for n > 2. Throughout  
this proof, the logarithm is the natural one, and log3t denotes (logt) 3. By 

definition, {hn} is a sequence of independent bounded random variables. Pu t  

Ehn = f h~d#. 

For a contraction T on L2(Y, ~r) and g E L2(~) we have the identity 

(,) 

N 
(hn(x) - Ehn)T~g 

n 
n = l  

N 
E fn(x)l{K'l<-"}(x)Tng = 

n 

i EhnTng N + E fn(x)l{n/l~ n<lf~l<-n}(x)Tng 
n n 

n = l  n = l  

We have to find a universal set of x (independent of T and g) for which the 

assertion of the theorem holds. Note that  the second sum does not depend on 

X. 

For the first sum on the right hand side of (*), we want to apply Theorem 4.2 

to {(hn - Ehn)/n} with p = 2, so we show that  {(hn - Ehn)/n} satisfies (21). 

Denoting f := f l  and using [[hn - Ehn[12 < 2][h~][2, we obtain, via Fubini's 
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theorem on (f~ x N), 

c~ h 2 
o0 f 1 2 n} log 3ndp n : E -~]fn] l{lY.l<n/log3 

=2/1 n=2 ~71fl l{Ifl<_n/loga~}l~ 3nd# 

log 3 n 
: f l f (x )]2  E -~ d# 

{n>2:~_>lf(~)l)  

log z n . 
_< / I f ( x ) l  ~ ~ ~ dt~, 

{n>_max{2,lf(x)] log 3 [f(x)[}} 

since 0 < a <_ n/log3n ==~ alog3a _< n. We now estimate the tail of the 

convergent series ~n~=2 n -2 log 3 n, which has eventually decreasing terms, by 
the integral test. Computing d [ t -1  log 3 t] we see that there is a constant C dt 
such that for t large (i.e., t > K) we have t -2 logat < d -1 _ C ~ [ - t  log 3t]. Since 

for large values of If[ we have also log(Ifl log 3 Ifl) <- 2log Ill, the last integral 

is bounded by 

C1 _~_ / l{ifl_>K } [f[2 E 
log 3 n 

n2 dp 
{n:n_>[Ifl log 3 Ifl]} 

<C1 + C2 f I{lyI_>K}If] 2 (l~ l~ Ift))3 d# 
- I l l ( l o g  lYl)  a 

-1- 8C2 ] -  l{Ifl>_K}lfldp < C1 q- 8C2 ] IfJd~ < ~ .  : C  1 

Thus E. 2 II(h - Eh.)/nll~ logan < c~. Let a** be the set given by Theorem 
4.2, so for fixed x E f/**, for any contraction T on L2(Tr) and g E L2(7r) we have 

7r a.e. convergence of the first sum of (*). Note that only integrability of f was 

needed. 

For the second sum in (*), we show that E,~__I ]Eh,]/n < ~ .  Since f ,  is 

centered, Ehn = -E(fnl{if,~i>~/log3 %) for n > 2. 

CLAIM: There exists N such that ifn > N and a > n~ log u n, then n < 2a log 3 a. 

Proof: Fix N with log n /  log(log 3n) > 10 for n > N. For n > N and a > 
n/log 3 n we have 

alogZ a > ~ [ l o g n -  log(log3 n)] a > (0.91ogn) 3 > ~n. 
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We return to the second sum in (*). For N given by the claim large enough we 

have 

,Ehn, < ~ E(lfnll{lf~l>_n/log3n}) = ~ f If]l{lfl>n/log3n} d # 
n=2  n n n=2  

< N~2f [fll{Ifl>n/l~ f Z nld# 
= { N < n < 2 1 f  Ilog 3 If]} 

_< C + f l{ift>e}lf/(log 2 + log If1 + 3 loglog If1)@ < cr 

since the last integral is finite by assumption. Hence ~n~=l IEh,d/n converges; 

thus, as remarked in the introduction, for any contraction T and g E L2(Tr), the 

series ~,~--1 IEh,~Tngl/n converges rr-a.e. 

For the third sum in ( . )  we use the previous computat ion to obtain 

f ~-~ lfnll{~/l~ d# < f ~-~ lfla{n/l~ dlz < n 
n=2  "0,=2 

Hence by Beppo Levi ~cr 1 Ifn(x)]l{n/logZn<lf,~l<n}(X)/n < c~ converges 

on a set f t '  with p(f2') = 1. Now it is clear tha t  for x ~ fl '  the series 

~-'~ ]fn(X) l (n/ log 3 n<lf,~l<n} (x)Tn g]/n 
n = l  

converges 7r a.e. We define fV = fY n fF*, so for x E f~* we have 7r a.e. 

convergence in (*). 

By Theorem 4.2 the maximal  function of the first term in (*) is square inte- 

grable. For x E fl* the suprema of the last two terms in (*) are bounded by 

the corresponding 7r-a.e. absolutely convergent series; each series is square inte- 

grable by the triangle inequality and the absolute convergence of the series of 

coefficients. This yields the desired square integrability of the maximal  function. 

When {f~} are symmetric,  so are {ha}, and Ehn = 0. Hence the second 

term in (*) vanishes identically. To t reat  the third sum in this case, we give a 

r cxD direct proof of the a.e. conve gence of ~-~'~n= 1 Ifn(x)]l{n/~og3 n<lY~l<n} (X) /n < C~, 
which uses only the condition f Ifl log + log + Ifld# < oc. Indeed, using the claim 

as before we obtain 

f ~ 2  Ifnll{n/l~ n = f ~  Ifll{n/l~ n 

/ 1 
<C+ l~lfl>e)l] I ~ -dp 

- -  n 

{If l<-n<-2lf[ l~ 3 Ill} 
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/ ,  

_<C + / l{ifl>_~}lfl(log 2 + log fit + loglog 3 If] - l~ - 1))d# 

f l{ifl>_e)lfl(log2 + 3log(log Ifl) + 2/Ifl)dl~ < c~. <_c + 

Since the application of Theorem 4.2 required only integrability of f ,  we finish 

the proof of the assertions as above. | 

Remarks: 1. When {fn} are centered i.i.d, and we take T the identity, we 

n obtain # almost sure convergence of ~n=l fin(X)~ ]. By the discussion following 

Theorem 6 of [30], in general there is no weaker integrability condition on f l  

that  ensures this convergence. 

2. When {fn} are symmetric i.i.d, which satisfy the assertion of the theorem, 

taking all multiplications by )~ (with I,~] = 1) we obtain pointwise convergence 

of the random Fourier series ~=l[fn(x))~n/n] (which is in fact uniform in )~ 

[25, p. 58]). By [45] we must have f l  E Llog + log + L. 

An inspection of the proof of Theorem 4.2 shows that  in fact we prove the 

following. 

THEOREM 4.5: Let {an} be a sequence which satisfies 

oo 

(i) ~ la~12(logn) a < e~ forp = 2, 

o r  

--~lanlP(logn)P(loglogn) p/2+` < c~ for 1 < p < 2 and e > O. 
n=2  

(ii) max ~ _ < C x / l o g ( / + l  ) lakl p forevery l>j>_O.  
I ) ' l= l  k = j + l  k-- 1 

Then for every contraction T on L2(Tr) and g E L2(~r), the series En~ a~Tng 
converges a.e. and in L2-norm. In particular, the Fourier series ~n~__l anA n 

converges for every IAI = 1. 

Remark: By Proposition 4.1, for a.e. x E [0, 1] the sequence 

an := en(x)/v~log3(n + 1) 

satisfies both conditions of the theorem with p = 2. However, we have no specific 

example of the appropriate "choice of signs". 
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Recall that  a Dunford-Schwartz operator on L1 (3;, 7r) is a contraction T which 

is also a contraction of L ~ ( y ,  Tr), and therefore is also a contraction of each 

Ls(Y, 7r), 1 < s < c~, by the Riesz-Thorin theorem (for a simple proof for 

Markov operators, see [27, p. 65]). The Dunford-Schwartz theorem gives a.e. 
1 n convergence of ~ ~-~-k=l Tkg for every g E L1 (Tr). 

Our results obviously apply to T Dunford-Schwartz and g C L2 (Tr), and this 

raises the question about what happens for g E Ls, 1 <_ s < 2. 

Recently, Assani [4] proved the ~r-a.e. convergence of Eke=, fk (x )Tkg/k  for 

g E Ls(Tr), s > 1, when {fn) C Lp, p > 1, are centered i.i.d. This extends pre- 

vious results of Rosenblatt [40, Theorem 18] (for {fn} a Rademacher sequence), 

Boukhari and Weber [7] (p = 2 and {fn)  symmetric), and Assani [2], [3] (con- 
1 n vergence of n ~ k = l  fk(X)Tkg)" Note that  for g C L2(~r), Theorem 4.4 yields 

Assani's result under the weaker requirement that  the i.i.d, variables {fn} are 
in L log + L. 
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