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ABSTRACT
We prove extensions of Menchoff’s inequality and the Menchoff-
Rademacher theorem for sequences {fn} C Ly, based on the size of the
norms of sums of sub-blocks of the first n functions. The results are ap-
plied to the study of a.e. convergence of series 3, anT™g/n™ when T is
an Lg-contraction, g € Lo, and {a,} is an appropriate sequence.

Given a sequence {fn} C Lp(Q, ), 1 < p < 2, of independent centered
random variables, we study conditions for the existence of a set of = of
u-probability 1, such that for every contraction T on La(Y,w) and g €
La(m), the random power series >, fn(2)T™g converges m-a.e. The con-
ditions are used to show that for {fn} centered i.i.d. with f; € Llog™ L,
there exists a set of  of full measure such that for every contraction T'
on Ly(Y, ) and g € La(n), the random series 3~ fn(2)T™g/n converges
T-a.e.

1. Introduction

Motivated by the problem of almost everywhere convergence of Fourier series,
Plancherel [37] studied the a.e. convergence of orthogonal series (for earlier work
see the introduction of [38]). Rademacher [38] and Menchoff* {31] proved (inde-
pendently) the following improvement of Plancherel’s result (which for Fourier
series had been observed by Hobson [22] to be equivalent to a result of Hardy
(54, Theorem I111.4.4]).

* We use Menchoff’s own spelling of his name in the papers he wrote in French.
Received November 28, 2003 and in revised form May 12, 2004
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THEOREM 1.1: Let (9, u) be a probability space, and let {f,} C La(u) be
an orthogonal sequence. If 37 ; || fx|l3(logn)? < oo, then the series 3 | f,
converges a.e.

When (1, i) is a o-finite measure space, let fi be a probability equivalent to p.
The order preserving isometry between L,(pt) and L,(fi) (e.g., [27, p. 189]) pre-
serves pointwise convergence, so all statements concerning one L, space proved
for probability spaces, like Theorem 1.1, are valid also in o-finite measure spaces.
We therefore deal in this paper only with (€2, u) a probability space.

Menchoff [31, Part III] extended Theorem 1.1 to the following.

THEOREM 1.2: Let {fn,} be a sequence in Lo(p), and let {p,} be positive
numbers such that

1
Z ps  for everyl>j > 0.
k=j+1

(1)

k=j+1
If Y% p2(logn)? < oo, then the series Y o | fn converges a.e.

A sequence {f,} C Lo(u) satisfying (1), for {p,} with > o p2 < 0o, was
called quast orthogonal in [31, Part III]; this term is defined differently in [24],
where an application of Theorem 1.2 is given.

An important step in the proof of Theorem 1.1 is the following inequality for
n orthogonal functions (see Salem [41] for a different proof):

ka

In the proof of Theorem 1.1 in Zygmund [54, §XIII.10] it is also proved that
under the theorem’s assumptions we have

>k

k=1

(2) < (2 +1logy ) Z||fl»||2-

1<l<n

sup

n>1 2

<A (logk)?||fill3-
]\,:

Khintchine and Kolmogorov [26] proved that if {f,} C L, is a sequence of
centered independent random variables, then convergence of 3, ||fn|[3 implies
a.e. convergence of 3. f,. Marcinkiewicz and Zygmund [30] obtained results
for series of centered independent random variables in Ly, 1 <p < 2.

Remark: Note that for any sequence {fn,} C Ly(r), 1 < p < 00, convergence
of 3, || fnllp implies a.e. absolute convergence of }_  f, (we may assume that
p is a probability, and obtain convergence of Y || fnll1)-
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Tandori [48] (for a detailed proof see also [49]) proved for {f,} orthogonal
that if Y o0 | || fall2lognlogt(1/]|fxl|2) < oo, then ", f» converges a.e., which
strictly improves Theorem 1.1 (see [34] and [49]). This condition is necessary in
the following sense [46]: If {an} is a sequence such that 3 o> | an¢n converges
a.e. for every orthonormal sequence {¢n}, then 3", |an|? lognlog, (1/]an|?) <
0. If {|an|} is non-increasing, then 3> | |a,|*(logn)? < oo [47]. For additional
information see [35]. Weber [51] extended Theorem 1.2 by the method of ma-
jorizing measures, replacing >~ p2 (logn)? < co by

{Zpi(logn)1‘5(10g+(1/pi))1+‘5 < 00

n=1
for some 0 < 4 < 1.

In [31, Theorem 12] Menchoff proved that for {f,} orthogonal, convergence of
the series > | || fx]|$ for some a < 2 implies a.e. convergence of 3, f,. The
inequality || - ||, < || |le, for 1 < a < 2 allows to deduce this result from the
following Billinglsey-Stechkin theorem (see [6, p. 102, problem 6]; a proof for
p > 2, based upon ideas of Stechkin, is given in Gaposhkin [15, Theorem 1.3.5];
Weber [53] has recently proved the theorem by the metric entropy method).

THEOREM 1.3: Let {fn}32, C Lp(n) with 1 < p < oo. Let {m,}2, be a
sequence of non-negative numbers, such that for some q > 1 we have

! 1
> h ps( 3 mk>q forl>j>0.

k=j+1 P k=j+1

If Y07 mp < o0, then ¥..7 | f, converges a.e.

Remarks: 1. For ¢ = 1 Theorem 1.3 is no longer true (e.g., Menchoff’s example
(31, Theorem 3]).
2. From [32, Theorem 1] we obtain |[sup,,>; | Y p_; frlllh < Cpo(3 ey mn).

2. Extensions of the Menchoff-Rademacher theorem

In this section we use strong maximal inequalities of Méricz [32] to obtain ex-
tensions of Theorem 1.1 for sequences in L,, and discuss their connection with
previously known results.

Definition 2.1: A triangular sequence of real numbers {d(j,1) : 0 < j <1 < n},
is said to be super additive if

(3) d(j, k) +d(k,1) <d(3,]) forany0<j<k<l<n.
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Remark: If {d(j,1)} is a non-negative super additive sequence and ¢ > 1,
then {(d(j,1))? : 0 < j <! < n}, denoted by d?, is also super additive, since
a? + B9 < (a+ B)? for every o, f > 0 (in fact || - [le, <] - |ley)-

Example 2.1: Let {m;};2, be a sequence of non-negative numbers, and let
g>1. Foranynand 0 < j <!l < n, define d(3,1) = Eizjﬂ my,, which is
obviously super additive. By the previous remark, {(Zﬁc: j+1™Mx)7} is a super
additive sequence.

Remark [29]: Let d(j,1) be a non-negative super additive sequence defined for
every [ > j > 0. Then by (3), d(0,n) is non-decreasing, and the sequence {m,}
defined by m; = d(0,1) and m,, = d(0,n) — d(0,n — 1) for n > 1 satisfies, by
(3),
!
(4) d(j,1) <d(0,)) = d(0,5) = > mi forl>j>0.
k=j+1
Definition: Let {d(j,l) : 0 < j < I < n} be a non-negative super additive
sequence, and for {fy : 1 <k <n} C Ly(x) put
!
Yo

k=j+1

P

(5) AW =inf {A :

<A-d(l) forevery0<j<l! Sn}.
P

Clearly A%Y < A for n; < n. Note that when A'Y < oo, we must have
Eﬁc=j+1 frx = 0 whenever d(j,1) =0, so

l
1 Sheyen £l

(d) — ‘ <j<l<nb.
AY max{ a0 ‘(],l) #0,0<y <l_n}

If d(4,1) >0 for 0 < j <! < n, then Al s finite, by the above formula.

The following lemma (and proposition) can be deduced from Theorem 3 of
Méricz [32], which was proved by the method of [42] (see [33, Theorem 3.1]
for a more general form). For the sake of completeness we include a different
proof, based on the proof of Menchofl’s inequality as given in Doob [12, Ch. IV,
Lemma 4.1, p. 156] (see also Zygmund [54, Ch. XIIIL,§10]).

LEMMA 2.1: Let {fi}}?_; C Lp(p), 1 <p < 00. Let {d(j,1) : 0< j <l <n} be
a super additive sequence of non-negative numbers with A%d) < 00. Then

!

>

=1

P
< A9(2 + log, n)Pd(0, n).
P

max
1<i<n
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Proof: Let 0 <7 be an integer with 2" <n < 2™} Put gp = fr if 1 <k < n;
for n < k < 2"t! put g = 0. Also, put d(j,1) = d(5,1) if 0 < j < [ < n;
put d(j,l) = 0if I > j > n; for j < n < I put d(4,1) = d(j,n). Clearly
{d(j,1) : 0 < j <1< 2™} is a super additive sequence.

By the definitions of {g;} and d, for any 0 < j <1 < 2"*! we have

1

ng

k=341

p ~
< AWd(5,0)
¥

(*)

with the same Aﬁ{” as above.
For any 0 <i<r+1and 1 <m < 2"F1¢ define Sm?- = Z?j(m—l)2i+l gk

and S} = max; <p<orti-: |Sm1| Clearly, |SF|P < Z
(*), and super additivity of d yield

1 |Sm.il?. Integration,

ord1—i or+1—i
I1S:112< Y ISmallz < Y ADd((m — 1)2, m2")
m=1 m=1

< ADd(0,27tY) = ADd(0,n).

Using the binary expansion of j, the sum Eid gr can be represented as a
sum of disjoint blocks of different sizes Sy, ; for suitable m’s and i’s. By this we

have that
r4+1

1<J<2r+1 Ingl S ZS*

Hence
r~+1
* () 1/p
Jpax. ka = | e, Z ZIIS llp < (r +2)[A57d(0,n)]
and the result follows. [ |

Remarks: 1. For p = 2 and {fx}}_, orthogonal, Menchoff’s inequality (2)

follows by taking d(j,1) Zk_JH [l fell3.
2. For p =1 we easily conclude

l

2

3. Billingsley {6, p. 102, problem 5] outlines a proof of the lemma for the
special case of A® =1 for d(j,!) as in Example 2.1. In any case, defining

max
1<i<n

lefh||1<2A<d (k—1,k) < ADd(0,n).
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d'(i,5) = A%d)d(i, j) we obtain A%dl) =1, so for fized n the assumption AW =1
is not a restriction.

4. The use of sequences satisfying (3) in the context of Menchofl’s inequality
is implicit in [42], and explicit in [44]. More general sequences were used in [33].

5. Also other authors, like Hannan [21, Lemma], Gaposhkin [16],
[17, Theorem 3], and Houdré [23, e.g., Theorem 3.1], considered various ex-
tensions of Menchoff’s inequality, or new applications of it, all beyond the scope
of orthogonal functions.

6. An inspection of the proof of the lemma shows that the result is true for
an arbitrary Banach lattice of functions.

PROPOSITION 2.2: Let {fy}i_; C Lp(p) with1 < p < 00. Let
{d(j,):0<j<l<n}

be a super additive sequence of non-negative numbers with A finite. Then
for any 0 < n1 < n, we have

ka

k=ni1+1

"< A9 @+ logy(n — m)Pd(ma, ).

n1<l<n

Proof: For n; = 0 this is Lemma 2.1, so we assume nqy > 0. Put gy = fi4.n, for
any 1 < k <n—nq, and put d(j,1) = d(j+n1,l4+n1) forany 0 < j < I < n—ny;
clearly dis a super additive sequence on {0 < j <l <n-m}.

For 0 < j <1< n-—n; we have

!

zgk

k=j+1

l+n1

ka

k=j+1+n,

4

4

< ADd(G +ny,l+n) = ADd(, 1),

which yields that A? , defined by (5) for d and {g;}, satisfies A® < A®
< 00. Using Lemma 2.1 we obtain

j P _1 p
max Al =, max [ g
n<j<n k=;1+1 P 1<j<n-m im1 P
< AY ny (2 +10gy(n — n1))Pd(0,n — ny)

<A d)(2+log2(n n1))Pd(ny,n). ]

Remark: A tighter inequality than that formulated in the proposition, which
depends only on n—ny, is given in the last line of the proof, using Afld_)n , instead

of A,
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PROPOSITION 2.3: Let {fi}r_; C Lp(p), 1 < p < 00, and let
{dG,):0<j<i<n}

be a super additive sequence of non-negative numbers, such that A%dq) < oo for
some q > 1. Then for any 0 < ny < n we have

Zf,,

k=n1+1

(6) < Cpe A d%(ny,n),

max
n <l§n

where Cy,, = (1 — 2(1-9/p)=p

Proof: We extend d to all pairs I > 7, by putting d(j,1) = d(j,n) for I >n > j
and d(j,1) = 0 for j > n. It is easy to check that d(j,!) is super additive for
alll > j > 0. For k > n define f; = 0, and let d(j,1) = (A% ad(j,1). Tt is
easy to check that || Zi‘:j+l fellh < (d(3,1))? for I > j > 0. We can now apply
Theorem 1 of Mdricz [32]. |

Remark: A different value for Cp, , was obtained by Longnecker and Serfling
[29].

Notation: Unless otherwise specified, all logarithms in the sequel are to the
base 2.

THEOREM 2.4: Let {fn}or; C Lp(u) with 1 < p < co. Let {d(j,0), | >
j > 0} be a non-negative super additive sequence, and let 1 < q < co. Put
my = d(0,1), m, = d(0,n) — d(0,n — 1) for n > 1, and define AP as in (5).
If Zflo:l(A(Q‘f:))l/q(log n)P/%m,, converges, then 3 >0 f, converges a.e. and in
L,-norm. Furthermore,

7 su
( ) n>I:1) LZ p
o 4(d") e
<2l + 1l + 207 (AL togrnyiom, ) |
n=1

Proof: By the remark following Example 2.1, (4) yields d(j,1) := Eiz 1 e >
d(j,1) for any I > j > 0. Hence Asldq) < AS{"’) for every n, so it is enough to
prove the theorem for d, i.e., we may assume d(7,l) = Zﬁc:jﬂ my.

(a) Using the following facts: (i) the definitions of @9 and A(dq)- (ii) A
non-decreasing, so for k > 2¥ + 1, we have Ag‘fﬁl < Ag‘i o (i) || - fle, <11 -Hlews



48 G. COHEN AND M. LIN Isr. J. Math.

we obtain
g+l 0o gv+1 q
Z/”" 2 fi du<2“”‘42”+1< 2 mk)
v=1 k=2v+41 =1 k=2v+41
fe.o] v+l 4 q
SZ( > (Aéﬁ)“q(logk)p/qu)
v=1 “k=2v41
21,+1 q
<Z Z /e logk)p/qu>
v=1 k=2v+1

q
(Z(A )Y/9(log n)?/%m,, ) < 0.

Hence (by Beppo Levi) the integrand 302 | v |Zk —gv41 Jk|P converges a.e.
(b) For any naturals r and m we obtain, using Holder’s inequality,

omtr mtr—1 2v+! m4r—1 p
S af-lY T af<(x- sz)
k=2m41 v=m k=2v+1 v=m k=2v+1
mAr—1 2vtl p\ s mtr—1 1 p—1
(L T a)( X me)
v=m k=2v41 v=m v
00 1 p—1 , o0 ovt!
s (Z vp/(p—l)) (va Z Fr )
v=m v=1 k=2v+1

The first factor in the last line converges to zero (as m — oo0) as the tail of a
convergent series (since 1 < p < o), while the last factor converges a.e. by (a),
so {Ei:l fi} is a Cauchy sequence a.e., and hence converges a.e. By taking
integrals of the above inequality, and considering the convergence proved in (a),
{Zizl fr} is a Cauchy sequence in L,-norm, and hence converges in norm.

(c) Using Proposition 2.2, and the inequality || - ||, < || - ||¢,, we have

2rn+l q
(d?)
O D DA SR (b S
=9m 41 k=2m+1
0 gm+1 . q
52( ) (Aéi’)l/qaogk)”“mk)
m=1 “g=2m41
2m+l

< (f: 2. (Aéi"))l/mogk)mmk)q



Vol. 148, 2005 EXTENSIONS OF THE MENCHOFF-RADEMACHER THEOREM 49

0 a q
= (Z(Agi))l/q(logn)p/qmn) < 0.

n=1
The above inequality clearly yields that maxgm cp<pm+r | 3 ppm 41 fel > 0as
m — 00, almost everywhere and in Ly-norm.
Now, (b) and (c) imply that " ° | f converges a.e. to g := limy,_00 Zf;l fa,
since for 2™ < n < 2™+, we have

:z:;fk—g‘s l Z fr| <

k=2m 41
By considering the norm convergence proved in (a) and (b), the Ly-norm
convergence follows by taking the Ly-norm in the above inequality.

Do S|

k=2m41

max
2m<n§2'"+1

Proof that the maximal function is in L,: The inequality in (b) with m =1
Z Fr

yields
)
Integration of the above inequality and application of {a) yield

o0 q
s o (A atogny/om, )

n=1

v+l
Yo ok

k=2v+41

sup
r>1

" (So) (B

v=1

2r+?

Z fr

The inequality in (¢) y1elds

ka

=2m4]

(*)

sup
r>1

sup
m>1 om <n<2m +1

n P

max E k

/ Z 21n<n<2m+1 f
k=2m+1

g
< <Z(A§i))1/q(logn)p/qmn) < oco.

n=1

Since . .
sup [ fil <|Al+f2l +sup| > fil,
nzl o n23 Ty

combining (%) and (**) with

d ok
k=1

o™

S i

k=3

<Mfillp + 11 fellp +

sup
m>2

sup
>

P

+ || sup

max
m>12m<n<2m+1

ka

k=2m41

we obtain inequality (7) for the maximal function. ]
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Remarks: 1. The proof of the a.e. convergence is based on the proof of the
Menchoff-Rademacher theorem as given in Alexits [1, p. 80].

2. Let p = 2 and {fn}52; be orthogonal in L,. By taking ¢ = 1 and
d@,l) = Zizj all fxl|3 in the above theorem, we simply get the Menchoff-
Rademacher theorem.

3. Zygmund’s proof of the Menchoff-Rademacher theorem [54, Theorem
XII1.10.21] is different from Alexits’s, and gives also the square-integrability of
the maximal function. Our proof that the maximal function is in L, is different
from Zygmund’s (which uses the Riesz—Fischer theorem).

4. Clearly ||fall5 < A%dq)m% for every n. For p = 1 this yields Y, ||fnlh <
Yo Ag‘f:)m%. The condition of the theorem for p = 1 implies Zn(Ag::) Wam, <
o0, which yields Y Aé’f:)m% < 00. Hence 3~ [|falli < 00,50 ), |fn] < o0 ace.

In the Menchoff-Rademacher theorem ¢ = 1, and A%dq) = 1 for every n.
When ¢ > 1 much more can be said, by using Proposition 2.3.

THEOREM 2.5: Let {fn}32; C Lp(p) with 1 < p < 0o. Let {d(j5,1) : 1 > j > 0}
be a non-negative super additive sequence, and assume that {A%dq)} is bounded
for some 1 < ¢ < co. If {d(0,n)} is bounded (i.e., converges), then Y -7 fn
converges a.e. and in Ly-norm. Furthermore,

o
k=1

Proof: Let A = sup,, A Put m, = d(0,n) — d(0,n — 1). Since d(n1,n) <
> k=ny41 ™Mk by (4), letting n = 00 in (6) yields

P
(@) 3
s1111p . < Cpq 5171Lp A nll}n;o d(0,n).

l P oo q
sup Z felll < ACM( Z mk) B 0.
midy_np oy k=ni+1 !
This shows all the assertions. |

Remark: Theorem 1.3 is the case where d(j,1) = ELHI my, for I > 7 > 0.

Notation: For a non-negative function g(u) and a real we denote [g(u)]* by
9% (u).

We will show that when ¢ > 1, Theorem 2.4 can be improved, even without
boundedness of {Asldq) }, by assuming convergence of a smaller numerical series.
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THEOREM 2.6: Let {f,}52; C Lp(p) with 1 < p < co. Let
{d@,0), >35> 0}

be a non-negative super additive sequence, and let 1 < g < co. Put my = d(0,1),
my, = d(0,n) — d(0,n — 1) for n > 1, and define ALY as in (5). Let ¥{u)
be a positive increasing function such that Y oo | 1/4?/?=1)(n) converges. If
z;‘;l(Agf) ){/9yP/9(logn)m,, converges, then oo | f, converges a.e. and in
Ly-norm. Furthermore, sup,~; | Y r_; fu| € Ly, and if 9(0) > 1 there exists
C > 0 such that -

®) Z f

q/p
<2|[lAllp + 1 fally + C“’—”/”(Z(Aéi”)l/w/qaogn>mn) ]

n=1

sup
n>1

Proof: The proof proceeds along the same lines as that of Theorem 2.4. Here
we use Proposition 2.3 instead of Proposition 2.2. As in Theorem 2.4, it is
enough to prove the theorem when d(j,1) = Zi: e Tk

(a) Using the monotonicity of 1, we obtain

gntl

[e] 00 q
> [ve |5 s du<zw”(v Agm( ) mk)
v=1 k=2v+1 =1 k=2v+1
o0 av+l . q
Z( > A‘?)l/wq(logk)mk)
=1 =2V+1
o0 gutl . q
S(Z 2. “”W“(logk)mk)
v=1k=2v41
(o 0] . q
= (Z(Aé?)l/w/q(logn)mn) < oo.
n=1

Hence (by Beppo Levi) the integrand Y oo, %P (v)] Zk —gv41 fr|P converges a.e.

(b) For any naturals » and m we obtain, using Holder’s inequality,

gt m4r—1 2vF! m4r—1 gvH!
T oal=lE oAl <L | S oali)
k=2m41 v=m k=2v+41 v=m k=2v+4+1
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m+r—1 2vt? m4r—1 p—1
S(Zw”(v ka)(zwp/(pl )
v=m k=2v+1
0 1 p—1 00 PA
. (; w/@_—l)(v)) (;W(U k;+1f’” >

Using (a) and (b) we conclude that { Zill fi} is a Cauchy sequence a.e. and in
L,-norm, hence converges a.e. and in norm.
(c) Using Proposition 2.3, we have

x

max E
Z /2n1<n<2v71+1 fk
m=1 -

k=2m41

27n+1

q
du<c,,,qug7:L( > )

k=2m+41

q
dq
sc,,,qz( ) (Aék’)”‘Imk)
m=1 “g=2m41
gm+1

s%(i > ) ”qm)

m=1k=2"+1

a q
> (AL o
n=

o0 " q
< O LA o4/ togmima ) < oo

n=1

Il
o
o

8

-

The above inequality yields that maxsm <p<om+1 | 3 p_gm 1 fi| = 0 as m — o0,
almost everywhere and in L,-norm.
Now, (b) and (c) imply that 3.2 | f, converges a.e. and in L,-norm.

Proof that the maximal function is in L,: The inequality in (b) with m =1
yields

2r+1 00 1 =1 . 2v+1
S — P(v
igrl) Z fk > (IZ::I d)p/(p—l)(v)> (;w L 2§v+1 fr )

Integration of the above inequality and application of (a) yield

ka

By assumption (n) — oo, so ¥(z) > 1 for x > N. The inequality in (c)

(*)

sup
r>1

o0 q
< () s ognym, )

n=1
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yields

(%)

v 00 n P
< d
_/mz <n<2m+1 k:;—f-l fs| du

et q
Sprq(Z(Aéi))l/qmn> < Cp,q(z d ) 1/q¢p/q(10gn) ) + B < o0,

n=1 n=1

>

k=2m+1

sup  max
77'L>1 am <n<2m+1

where B is 0 if 4(0) > 1, and is otherwise a finite sum without ¢ (logn) of the
terms having ¥(logn) < 1. When 9(0) > 1 we use (x) and (x*), and obtain (8)
for the maximal function with C = KP=1/a 4 (C, )*/9. [

COROLLARY 2.7: Let {fn}52, C Ly(p) with 1 < p < co. Let {m,}3, be a
sequence of non-negative numbers, and put d(j,1) = Zk:j—}-l my for 0 <3 <L

Fix 1 < g < oo, and define A asin (5). If

S (A7) (log m) P/ (log log n) P~ /4+em

n=2

converges for some ¢ > 0, then > 0, fn converges a.e. and in L,-norm.
Furthermore,

sup
n>1

ka

' a/p
21111y + 1 fellp + C( Z(Aé‘;?)1/q<logn><p~”/q(loglogn)<p—1)/q+fmn) ]

n=2
for some C > 0.
When ¢ > p, Theorem 2.4 (and Corollary 2.7) can be improved as follows.

THEOREM 2.8: Assume that in Theorem 2.4, ¢ >p> 1. If 3 I(A(d Nam,

< oo, then 3, f, converges a.e. and in Ly-norm, with sup,~, | S p_; fx| €
Ly.

Proof: As in the proof of Theorem 2.6, we may assume d(j,1) = Ei= 41 Tk
For brevity denote A% by A,. By definition, ||f,||} < A,m%. By induction

on | we prove ”Zk:]’+l Sl < Zksz Ak “my)? for 0 < j < I, using
a?/? 4 BUP < (o + )17, as follows:

+1 ¢ Y afp , g/ 41 afp
S f w( R qu) 4 (Agﬁmlﬂ) g( > 4w
k=j+1 k=341 k=j+1
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Hence the assertions of the theorem follow from Theorem 2.5; see also Theorem
1.3. ]

THEOREM 2.9: Let {fn}32, C Ly(u) with 1 < p < co. Let {m,}2, be a
sequence of non-negative numbers, and let 1 < q¢ < co. Assume that for any
n > 0 there is a constant A,, < oo such that

!
> i

k=j+1

P { q
9) gAn(ka> for0<j<l<n.

14 k=j+1

Then ) ", fn converges a.e. and in Ly-norm, with sup,>; | Yj1 ful € Lp(n),
if one of the following sets of conditions holds:
(i) ¢g=1and Y 7, Asu(logn)Pm, < .
(ii) ¢ > 1, {An} is bounded, and 3 oo | My < 00.
(i) p>g>1land )y o7, A;,/Lq (logn)P~D/4(loglogn)P~V/etem, < co.
(iv) ¢>p>1and 52, A %m, < co.

Proof: The previous results apply to d(j,1) = Zi: 41 M, since A%dq) < A,
[ |

PROPOSITION 2.10: Let {a,} be a sequence of complex numbers, and let
l<p<ooandl <t < oo Let{fn} C Ly() such that for some constant
C > 0 we have

! ! 1/t
(10) Z arfrl| < C( Z |ak|t> for every | > j > 0.
k=j+1 p k=j+1
If either
(i) p<tand 322, |an|P(logn)? < oo,
or

(ii) p>tand Yo7, lan|t < o0,
then Y > | an frn converges a.e. Furthermore, sup,,>, | S heq @ fi] is in Ly(p).

Proof: (i) Since t/p > 1, condition (10) and the inequality || - [[¢,,, < II - [le,

yield
!

Z ar fx

k=j+1

p

l p/t l
SCP( Z |aklp~t/l7) <cP Z lax|?,

so condition (9) is satisfied by the sequence {ayfr}, with my = |ax|?, ¢ = 1,
and A, = CP. Now Theorem 2.9(i) applies when } >, las|?(logn)? < co.
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(ii) Condition (10) yields || Sj;py axfill2 < (Thejyq 1Cax|*)?/ for every

[ > j > 0, and since p > t we obtain the a.e. convergence of ), ai fi from
Theorem 1.3. Proposition 2.3 yields

I
> afi
k=1

Letting n — oo we obtain that sup,,>; | Y_y—; axfsl is in Ly(p). [

n p/t
< Cp,p/t(Zlcaklt) :

k=1

14
p

1<i<n

Remarks: 1. When p < t, convergence of }__ |a,|?(logn)? implies convergence
of 3, lan|*. When p > ¢, convergence of 3 |an|* implies that of 3°, |an|”.

2. Theorem 1.2 follows by applying Proposition 2.10(i) to {;1; fi}, with p =
t = 2 and a; = py, since (10) follows from (1).

In the sequel we will denote the unit circle by T', and the normalized Haar
(Lebesgue) measure by dA.

PROPOSITION 2.11: Let {a,} be a sequence of complex numbers, and let
1 < p < oo and g > 2 with dual index ¢' = q/(g —1). Let {fn} C Lp(p)
such that for some constant C' > 0 we have

l

Z a fr

k=j+1

l

Z ak)\k

k=j+1

(11) <C

P

for anyl> 3 > 0.
Lq(dX)

Then: (i) (10) holds with t = ¢'; (ii) when ¢’ < p, for every l > j > 0 we have

l

> afy

k=j+1

l

AV
SC< > Iak|q>
P k

(12) l y
P
<C(l- j)(p—l)/p—l/q( Z |ak|p> .
k=j+1
Proof: Note that (11) implies ||fy||, < C' when a, # 0. For ¢ = co we have
¢’ =1, and we combine (11) with

: N2 1/p
> |ak|su—a)(l—_—3 3 m;p) .

<
Loc(dX)  k=j+1 k=j+1

!

Z ak/\k

k=j+1

(i) Assume 2 < ¢ < 0o. Then 1 < ¢’ < 2, s0 by the Hausdorff-Young theorem

we obtain
q 1/q l A Ve
d < aﬂ) .
(f ) <( X

k=j+1

l

Z ap\F

k=741
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(ii) When 1 < ¢’ < p, the inequality ||||¢ < ||-||, in probability spaces yields

(}lj |ak|q’>l/q' -9 (= .S rakl'I) "

k=j+1 —g+1

<=9 (2 5 |ak|”) "

—J k=j+1
Using (11) the result follows. ]

Remarks: 1. When sup, ||fn|lp < o and all a,, are non-negative, (11) holds
with ¢ = oo

2. By Proposition 2.11, (11) implies (10) with ¢ = ¢/, so Proposition 2.10 can
be applied.

3. Recall the following definition (see [23] and the references therein): Let 1 <
P,q < 00. A sequence of random variables {f,} is said to be (p, ¢)-bounded, if
there is a universal constant C > 0 such that for any finite sequence of complex
numbers aj;1,...,a;, 0 < j <, (11) holds.

In Proposition 2.11 we assume that we are given only one sequence of complex
numbers {a,} such that the pair ({an},{fn}) satisfies (11) for some ¢ > 2 and
obtain (10) with ¢t = ¢'.

4. Houdré [23, Theorem 3.1] proved that if (11) holds for ¢ > p = 2 and

o0
(13) S lealInl(=2/(log(1 + fnl)? < oo,
n=-—0o0
then 3", an fy converges a.e. (the proof in [23] does not need {f,} to be (2,q)-
bounded). When ¢ = 2 this convergence follows from Proposition 2.10(i), and
when ¢ > 2 we can use Proposition 2.10(ii) with ¢t = ¢’, since Holder’s inequality
in £y/y yields

!

o In(q 2)/(24-2) (Jog(1 + n))4
;lanl" Zl x| n(a=2)/(24-2) (log(1 + n))¢’

o N2 . (29172
< g—<)/q
<( S tnternog+m?) (S )

n=1

< 00.

Note that convergence of Y oo, lan|? does not imply (13). Specifically, for ¢ > 2
define a,, = n=@2/2¢ for n = 2% and a, = 27" otherwise. We then have

[o o]
Z lan|?n9=2/9(logn)? > Z |an|*n(=D/4(log n)? Ek2 = 00.

n=1 ne{2*}
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On the other hand, it is easy to check that 3" |a,|? < cc.

5. For a (p,q)-bounded sequence {f,}nez with p < 2 < ¢, a.e. conver-
gence of 3 .2 ayfi is proved in [23] for any {a,} satisfying (13). The (p, q)-
boundedness is used there to obtain that {f,} is a projection of a (2, ¢)-bounded
sequence.

We deal here only with one pair ({an},{fn}) that satisfies (11), rather than
{p. g)-boundedness of {f,}; for ¢ < p, condition (13) implies the a.e. con-
vergence of 3 anf, by Proposition 2.10(ii) (see the previous remark). For
p < ¢ < 2, we obtain the convergence from 5 -, |a,|P(logn)? < oo, by Propo-
sition 2.10(i). This last condition does not imply (13); for the sequence defined
in remark 5 above,

o0

2 lax|F (logn)? Z vy 2)/2q + 22 "Pllogn)? < oo.
k=1
6. Let {fn} C Ly(p), 1 < p < 00, satisfy sup,, || fnllp < 00, and let {a,} satisfy
Yooy lan[PnP~ (logn)P < co. Then 5 |a,| < oo, since putting p' = p/(p — 1)
and using Holder’s inequality we have

1 _
Z|an| Zmlanln(” /P logn

N ] 1/p' N 1/p
<1 laaPnm (log n)?| .
S| [Zh

Hence Y7 | |an fn| converges a.e. For p = 2 this convergence was proved (using
deeper results) by Houdré [23, Remark 3.4(iv)].

7. Let p > 1, define a, = 1/n(logn)(loglogn)®+1/22 and put f, = 1
Clearly, the series > | anf, everywhere diverges, but since p > 1, for any
“rate” 0 < b, < CnP~!(logn)P~! we have

I & > oo 1
— olPbn < Ppp—1] =1 )
C ;la [Pbr, < Z |an[PnP~* (log n) ;::2 nllog ) (loglog m) P+ 172 < oo

Thus the power of » in the condition of the previous remark is optimal, and the
logarithm should be with power greater than p — 1.

THEOREM 2.12: Let {f,}52; C Lp(p) with 1 < p < co. Let
{d(5,)) : 0 < j <l < o0}

be a super additive sequence of non-negative numbers, and define A'? as in (5).
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(i) If o(n) is a sequence decreasing to zero with 0 < ¢(n) < Cy(2n), such
that

i AP (n)(log n)?d(0,m) _

n

b
n=1

then ¢(n) > _,_; fx = 0 a.e. and in Ly-norm. Furthermore,

sup {p(n) Z fil € Lp(w).
n>0 k=1

(ii) If in addition
Z[w p(n+ DI(AL(0,n)/? < oo,
then Y .7 | o(n)f, converges a.e. and in Ly-norm. Furthermore,

sup | Z«p(k)fkl € Ly(p).
n>0 b1

Proof: We may and do assume that p is a probability measure. Denote S,, =
$>"_, fr- By the definition of A%, we have ||Sen ||2 < A d(0,2™).
By Proposition 2.2

<3P AL mPd(2m, 2m ).

ka

am <2m+1
<r k=2m+1

4

Since d is a non-negative super additive sequence, we have d(2™,2m*+1) <
d(0,2™*1) and d(0,2™) < d(0,2™*'). By using this and the monotonicity
of A%d), we have

m,i;l [1\&0(2’”)Szm 2+ Hgo@m)p max B ;ﬂf‘” ]

<2.3PCP Z AY mPeP(2™1)d(0, 2.
m=1
The convergence of the right hand side above will imply the convergence to
zero of {¢(n) > p_, fi}n, a.e. and in Ly-norm. Indeed, by monotonicity of AY,
¢(n), and d(0,n), term by term estimation and the inequality ¢(n) < C<p(2n)
yield

m+1
T+ AV (m)(logn)d(0,n) _  AfleP@™)m?
n - 2ml

d(0,2™)
n=2m+1

220 ALl (2™) (m — 1)7d(0,2™).
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By summing on m, and considering the assumption of the theorem, the conver-
gence of the right hand side of () follows, which implies convergence to zero
(a.e. and in Ly-norm) of

om

oM P i d {ol2"), max S Al

k=2m41

The claimed convergence to zero (a.e. and in norm) of {p(n) >7_, fi} is now
deduced as in Theorem 2.4.
Because the series in (*) converges, we can integrate the inequalities

sup (2752 P < 5 lo@)San

m=1

and

Yo

k=2m 41

ka

k=2m+41

P o)
< 2m
] = Z [cp( )2m<n<2m+1

m=1

su 2m max
sz:; [SO( ) 2n1<ns2m+]

] .

This implies the integrability of the maximal function.
Using Abel’s summation by parts,

(+%) > (k) fie = o(n) Sy + Z [p(k) — p(k +1))Sk

k=1 k=1

The first term on the right converges to zero, a.e. and in Ly,-norm, as shown
above. Since p is a probability, the assumption yields

D lo(k) = ok + DSkl <D lp(k) — p(k + 1)]IISkll
k=1 k=1
(x5 %) < Y le(k) = ok + )0, HALP)? < oo.
k=1
Hence the series on the right of (=)} converges, absolutely a.e. by the convergence
of the left term of (x*#), and in L,-norm by the convergence of the middle term

of (% x). Hence {3_;'_, ¢(k) fx} converges a.e. and in L,-norm.
For the maximal function we have

ZLP ) fi

The first term is in L, as shown before. The second term is in L, by (* * *).
|

sup
n>0

< sup|ip(n 5["‘2[80("7 (k + 1)]ISk!-
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Remarks: 1. Let j be the first integer with f; # 0, so Ag-d) > 0. By definition,

A and d(0,n) are non-decreasing, so we have

n

i *(n)(log n)P AL d(0, 1) Z A log n)?d(0,n)

n=j _-n—J
Hence for the convergence of the majorizing series, {¢(n)} must decrease to
zero faster than {1/(logn)'*1/?}. On the other hand, the condition 0 < ¢(n) <
C¢(2n) does not allow ¢ to decrease to zero too fast: @(n) > p(1)/n'°82€.

2. In contrast with Theorem 2.4, Theorem 2.12 gives conditions for a specific
rate of convergence. It can happen that for given {f,} and d, the series ), fn
does not converge (so the condition of Theorem 2.4 does not hold); in that case
Theorem 2.12 allows to evaluate the rate of growth of the partial sums.

3. In order to obtain the a.e. convergence of 3~ ; ¢(n) fn from Theorem 2.4,
one must be able to compute (or estimate) the corresponding Al

The proof of the following theorem proceeds along the same lines as that of
Theorem 2.12. Here we use Proposition 2.3 instead of Proposition 2.2.

THEOREM 2.13: Let {fn}52, C Lp(u) with1 <p < oco. Let
{d(j,1) : 0 < j <1 < 00}

be a super additive sequence of non-negative numbers, and let ¢ > 1. Define
A asin (5).

(i) If ¢(n) is a sequence decreasing to zero with 0 < p(n) < Cy(2n), such
that

=, AW oP(n)de(0,n) -

n
n=1

then o(n) > ,_, fx = 0 a.e. and in Ly-norm. Furthermore,
sup |o(n) Y ful € Ly(w).
n>0 k=1
(ii) If in addition
o0
D _le(n) - pn + )AL (0,m))? < oo,

then > o0 | ¢(n)f converges a.e. and in Ly-norm. Furthermore,

sup | > _ (k) fil € Lp(u)-
n>0 k=1
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Remarks: 1. The following condition was considered in Gaposhkin [17]:

There exists a positive non-decreasing sequence {¥(n)}, satisfying ¥(2n) <
C¥(n) for some positive constant C, such that for any non-negative integers n
and m

m+n 2 m+n
(14) Yo anfi]| <¥(n) D ekl
k=m+1 2 k=m+1

If the pair ({an}, {fn}) satisfies (14), then AY < @(n).

2. Condition (14) can fail even for orthogonal sequences. Take a, = 1 and
{fn} orthogonal with {||f.||2} unbounded; (14) does not hold, since ¥(1) < oo
implies sup,, || f|] < oo.

Let |-] and [-] denote the lower and the upper integral parts. For a given
positive non-decreasing sequence {¥(n)}S2; define A(1) = ¥(1) and A(n) =
Z,E’i%"J ¥([5%51). The following theorem is simply Theorem 4 of [32]. The
above explicit formula for A(n) is given in [33] with @ = 1 there.

PROPOSITION 2.14: Let {fa}52, C Ly(nt), 1 < p < 00, and let {d(j,1)} be a
super additive sequence of non-negative numbers. Assume that there exists a
positive non-decreasing sequence {¥(n)}52, such that

(15)

< WPl — 5)d(j,1) forl>j>0.
P

—]+1

Then for any 0 < ny < n, we have

Z fr

k=ni+1

P
n1<l<n <A (n —ny)d(ny,n).

Example 2.2: The following can be verified by the above formula for A(n). If
¥(n) = (logn)? with 8 > 0, then A(n) < (2 +1logn)?*. If ¥(n) = n®(logn)?
with @ > 0 and J any real, then A(n) < K, gn®(logn)®.

Remarks: 1. Since {¥(n)} is non-decreasing, condition (15) yields AP <
WP (n).

2. The above example shows that when ¥(n) = (logn)? with 8 > 0, Propo-
sition 2.14 gives no more than Proposition 2.2, although the assumption in
Proposition 2.14 is stronger.
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THEOREM 2.15: Let {fn}32; C L,y(u) with1 < p < o0. Let {d(34,1), I > 7 > 0}
be a non-negative super additive sequence, and put my = d(0,1), m, = d(0,n)—
d(0,n — 1) for n > 1. Assume that for some a > 0 and 3 real, condition (15)
holds with ¥(n) = n%(logn)®. If 32, n°?(logn)PP+V1(loglogn)P~1+em
converges for some € > 0, then Y .o | f, converges a.e. and in Ly-norm, Wltb
SUP,>1 | 2oy il € Lp(p)-

Proof: The proof proceeds along the same lines as that of Theorem 2.6, with
g =1 and ¢(u) = uP=1/?(log u)(P—1)/P+¢ We use Proposition 2.14 instead of
Proposition 2.3, where the estimation of A(n) is taken from Example 2.2. |

3. Applications to ergodic theory

In this section we look at the problem of a.e. convergence of series ) n~%a, T" f,
a < 1, for power-bounded operators on L,. We apply the previous results in
order to obtain conditions on {a,} and on the function f € L,, which ensure
the a.e. convergence for an appropriate a. For contractions on Ls we obtain
conditions on f in terms of {(T"f, f)}.

THEOREM 3.1: Let T be a power bounded operator on L,(u), 1 < p < oo, and
f € Lp(u) such that for some 0 < 8 < 1, we have

1 n
k
a2 T
k=1

Let {b,} be a sequence of complex numbers such 3 oo b — bny1| < 00.
(i) When 0 < 3 < (p — 1)/p, for every € > 0 the series

i b T f
nl=B(logn)lte

n=2

(16) K :=sup
n>0

< 00.

converges a.e. and in Ly-norm; moreover,

1
ni=B(logn)l/r+e

Zka f—o0

a.e. and in L,-norm.
(i) When (p — 1)/p < B < 1, for every € > 0 the series

i b, T" f
= nl/P(log 'n,)1+1/11+f
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converges a.e. and in Ly-norm.
In each of the above cases, the corresponding maximal function is in L.

Proof: Since {b,} is of bounded variation, it converges. Put

o0
V=" |bn = bnpal-
n=1

Inspection of the proof of Lemma 1 in [10] shows that if (16) holds, then also
n
l—— Z b T* f
k=

For any j > 0 the sequence {b;;,}52, is also of bounded variation, and clearly

(%) sup < K':= KV + Ksup|b,| < co.

P

Yoo |bjen—bjynt1| < V. Applying (x) to the sequence {b;4+,}52,, and noting
that K and V, hence K’, are independent of 7, we obtain

Z b T* f ‘

k=j+1
For positive @ and v let ¢(u) = 1/u*(logu)”. Using the derivative we obtain
that

]
T9y bk THf

p
< (sup [|T*||P)(K")P (1 — 5)P*=P).
k=1 k>0

P

log, 2
p(n) —en+1) < o +v/log, for n > 2.

~ natl(logn)Y

Put f, =b,T"f, and for I > j > 0 define d(j,1) =1 — j.
(i) Put ¢ = p(1 — B) > 1. From (*x) we obtain that

A < (K'YP sup || T*||P.
k>0

Theorem 2.13 applies, with the appropriate o and ~.
(i) Since p(1 — B) < 1, using (xx) we have that A < (K')? SUPk >0 | Tk||P.
So, Theorem 2.12 applies. ]

Remarks: 1. The estimate (xx) in the proof allows us to use the results of
G4l and Koksma [14], which yield the same “strong laws of large numbers with
rates” as in the above theorem; in case (i) we use [14, Theorem 5], and in case
(ii) we use [14, Theorem 3].

2. The case b, = 1 was treated in Gaposhkin {18, Theorem 3] when p = 2
and T is unitary on L, in Derriennic and Lin [11, Corollary 3.7] when T is a
Dunford-Schwartz operator, and in Weber [52, Proposition 1.6] in the general
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case treated here. Applying Kronecker’s lemma to the series in (i) (with b, =
1) yields the same “strong law with rate” as Weber for 8 > (p — 1)/p, but
our rate obtained directly in (i) is better; the rate in the “strong law of large
numbers” obtained from (ii) by Kronecker’s lemma is the same as Weber’s when
B8 = (p —1)/p, but worse than Weber’s (in the power of the logarithm) when
B < (p—1)/p. For T Dunford-Schwartz, our result is better than [11] when
B8 < (p—1)/p. For T unitary, Gaposhkin’s results are better than ours.

3. Sublinear growth conditions on the norms {|| }_,_, T f||} were used also
in [10] and [9] to obtain for f the pointwise ergodic theorem with rate, as well as
a.e. convergence of the one-sided ergodic Hilbert transform. Our present results
are more precise.

For an Ly (u)-bounded sequence {f;}%2, and any integer n > 0 we define

/fjjﬁr—ndl" < 0.

®(n) := sup
i1

Clearly, ®(n) < sup,>; 115113

Remarks: 1. Ly(u)-bounded sequences {f;}, with [ fjdp =0and 3 .., ®(n)
< oo, were considered in Gaposhkin [19], and were called weakly correlated
sequences.

2. For an isometry operator V, f € Lo(u), and f, := V" f (ie., {fn} is wide
sense stationary), we have ®(n) = | [ fnfodpul-

The following lemma appears in Gaposhkin [16, Lemma 1] (see also Serfling
[43, Lemma 2.1], Weber [51, Lemma 14]).

LEMMA 3.2: Let {a,} be a sequence of complex numbers, and let {f,} be an
Lo(p)-bounded sequence. Then for any n,m > 1

m+n 2 n—1 m+n
) R IELURE LT I s
k=m+1 2 k=1 k=m+1

CoROLLARY 3.3: Let {f,} be an La(u)-bounded sequence, and put o, =
®(0) +23,_, ®(k). Let {an} be a sequence of complex numbers. The series
S L anfn converges a.e. and in Ly-norm, with sup, o |3 ;1 axfil in La(p),
in either of the following cases:

(i) o5 = O(n*(logn)?) for some o > 0 and f real, and the series

o0
3" lan/*n® (logn)®*(loglog n)**¢

n=2
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converges for some ¢ > 0.
(ii) 0, = O((logn)?) with B > 0, and 32| |an|?(logn)?*+? converges,

Proof: Put d(j,1) = Zﬁc:j+1 lax|> and p = 2.
(i) By Lemma 3.2 we obtain (15) for {a,f,}, with

¥2(n) = 0, = O(n*(logn)®).

The result follows by applying Theorem 2.15.
(ii) By Lemma 3.2 we obtain (9) for {a,f,}, with ¢ = 1, m,, = |a,|?, and
An = 0,. Theorem 2.9(i) yields the result. ]

Remarks: 1. Obviously o, = O{(n}, but convergence of
Z |an|*nlogn(loglogn)'+e

implies }°_ |an| < 0o by Cauchy’s inequality, so the interest in (i) is when o < 1.

2. Without referring to the order of ¢, Theorem 2.9(i) yields the desired
convergence when Y, |a,|?02,(logn)? < co. This, with o2, replaced by o,
was obtained by Gaposhkin [16, Theorem 1]. Note that this is not important
for the classes of {®(n)} considered there.

3. Part (ii) was proved in [16, Corollaries 1 and 2]. A better result (smaller
power of logn) for part (i) was obtained in [16, Corollary 3], under a mild
additional condition on ®(n).

4. In the stationary case, Gaposhkin [16] proved that under a given rate of
decay to zero of {®(n)}, the convergence of >° , |an|?c2(logn)? is an optimal
condition for the a.e. convergence of 37 | a, f,. Note that for {f,} orthonor-
mal, Corollary 3.3(ii) becomes the Menchoff-Rademacher theorem.

Let T be a contraction of a Hilbert space H. Define T, := T™ for n > 0 and
Ty, := (T*) for n < 0. Then {(T,.f, f)} is a positive semi-definite sequence [39,
Appendix,§9] (see also [27, Proposition 3.1, p. 94]), so by Herglotz’s theorem
it is the Fourier coefficients of a positive measure vy on the unit circle I. By
the unitary dilation theorem of B. Sz. Nagy [39, Theorem III, p. 469] (the proof
of which uses the positive semi-definiteness of {{T, f, f)}), there exist a larger
Hilbert space H', an orthogonal projection Py on H, and unitary operator U
on ‘H' such that for every g € H' and every integer n we have T,, Py g = Py U"g.
For f € H, the above identity yields

(Tnf, f) = (PrU™, f) = (U™ f, P f) = (U™ f, P f) = (U™ £, f).
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By the spectral representation theorem for unitary operators, v; is the spectral
measure of f with respect to U, with Fourier coefficients {(T},f, f)}.

Definition 3.1: For a contraction T on H and f € H, we call vy the unitary
spectral measure of f (with respect to T'). When vy is absolutely continuous,
we say that f has spectral density, which is dvy/dA.

Remark: There are cases where all that is needed is to extend T to an isometry,
i.e., we need an isometry dilation. If V is an isometry dilation of T, then we
still have (T"f, f} = (V" f, f) for all non-negative n and f € H.

PROPOSITION 3.4: Let {a,} be a sequence of complex numbers. Let T be a
contraction of Ls(u) and f € Lo(n). For any integers m,n > 1 we have the
following:

@) IS aT*FI3 < IR +2 sy KTHf A e, laxf.
(ii) For 1 <u < o0 and v :=u/(u — 1),

m+n 2 n—1 1/vy m+n
S T s[nfn%+2n1/"(2|<T'°f,f>1“) ] S el
k=m+1 2 k=1 k=m+1

(itl) If f has spectral density in L,(d\), 1 < u < oo, then

m+n

2 dv m+n (u+1)/u
> aTt| <l S0 a0
dA
k=m+1 2 Lu(dX) N p=m+1
m4+n
< l/u 2'
<l _X:Hl a|
(iv) If f has bounded spectral density, then
m+n +n
dv
> arts] <[4, > Il
Loo(dX)
k=m

Proof: (i) We first prove it when T = V is isometry. We take ®(n) = (V" f, f)|
and f, = V" f, hence (i) follows (for V) by Lemma 3.2.

Now for T a contraction, let V be the isometry dilation of T, and let Py
be the corresponding projection. By the discussion preceding the proposition,
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(T™f, fy=(V™f, f), so we have

m+n 2 m+n 2 m+4n 2
S wTH| = PH( )3 akka) < ' avts
k=m+1 2 k=m+1 2 k=m+1 2
_ n—1 m4n
< nfn§+22|<v’ff,f>i] Sl
- k=m+1
n—1 m+n
= |If||2+2Z|T’“ff] S el
k=1 k=m+1
(ii) Using Holder’s inequality
n—1 1/v
ST, )] < (Z|<T’~ff )"
k=1

hence (ii) follows from (i).

(iii) In the proof of (i) we could use the unitary dilation U of T instead of
using the isometry dilation, so it suffices to prove for U. Denote the spectral
density h = dvy/d\ € L,(d)\). When u < oo, the spectral theorem and Hélder's
inequality yield

m+n 2 m+n 2

Yo alUtf|| = / > adk| h(X)dA
k=m-1 2 Pli=mt1
m+n 2u/(u—1)\ (u~1)/u
S”h“Lu(d)\)(/ Z ap\® ) dX.
r k=m-+1
Hence
m+n m+n
> U ‘ <A || Dt
k=m+1 k=m+1 Lq(dX)

with ¢ = 2u/(u — 1). We now apply Proposition 2.11(i-ii) with p = 2.
(iv) Again we prove only for U unitary. Put h()\) = dv;/d). The spectral
theorem now yields

m+n 2 m+n 2 m+n
S wUtf =/ ST A <l S sl
k=m+1 2 k=m+1 k=m+1

Remark: For T unitary, (i) and (iv) appear (without proof) in Gaposhkin [17].
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PROPOSITION 3.5: Let {a,} be a sequence of complex numbers, and let 1 <
u < oo with dual index v := u/{u — 1). Let T be a contraction of Ls(p) and
f € La(p). For any integers m,n > 1 we have the following:

(i)

m+n m+n
D" @ 5 <n'*( D lasl)*™(IIfI5 +2ZI<T’“ff IRA
k=m++1 k=m+1 k=1

(ii) If 1 < u <2, and f has spectral density in L,(d)\), then

m+n 2/u
/v U
n E a .
Ly (dX) <k=m+1| g )

Proof: (i) We first prove the proposition when T = U is a unitary operator.

m+n

2
Y aThf|| <
2

k=m+1

dvy

21/U
dA

(18)

Using Holder’s inequality

m+n 2 m4+n ]
Z aURfl| = Z ara(U*f,U° f)
k=m+1 2 ki=m+1
m+n 2/u m+n ' 1/v
(X ) (X @)
k=m+1 k,i=m+1
m+n 2/u n . 1/v
(X ) (X wrar)
k=m+1 k,i=1
m+n 2/u n—1 1/v
< (Y k) (X wrar)
k=m+1 k=—(n—1)
m+n 2/u n—1 1/v
=% ) (I 2 X k)
k=m+1 k=1

Now for T a contraction, let U be the unitary dilation of T, and let Py
be the corresponding projection. By the discussion preceding Proposition 3.4,
(T™f, fY = (U™f, f} for n > 0, so using the previous calculation we have

m+n 2 m+n 2 m+n 2
Z axT* f PH( Z akka> < Z axU*f
k=m+1 2 k=m+1 2 k=m+1 2
m+n 2/u n—1 1/v
<o (30 tatt) (I8 2 KT
k=m+1 k=1

(ii) Follows from (i) by the Hausdorff-Young theorem. ]
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Example 3.1: For f in Lo(T', d)), where d) is the Lebesgue measure on the unit
circleT', define U f(\) := Af(A). Then U is unitary on Lo(T',dA). Fix1 < p < o0
and 0 < g € L,(d)), and let f = /g € Ly; clearly (U*f, f) = [ A¥g(N)d], so
the unitary spectral measure of f with respect to U is absolutely continuous
with density g.

Example 3.2: Let {gy : —00 < k < oo} C H be an orthonormal sequence;
then g, = U™go, where U is the bilateral shift on the closed subspace generated
by {gx}. For any {cx} € €2(Z) define the moving average sequence f, :=
Zz’;_ o Ck9n+k, Where the series is convergent by the Riesz-Fischer theorem.
Clearly f, = U™fy (so {fn} is a well defined wide sense stationary process).
Denote by v the spectral measure of fo with respect to U; then dv/dX\ = |a()\)|?,
where a(X) := Y po ___ cxA¥ is defined in Ly(dA)-norm by Riesz-Fischer, and
hence dv/d\ € Ly(d\). If we impose {cx} € ¢, then a()) is a continuous
function on T', so dv/dA € La(dA). When {ci} € €5, 1 < p < 2, then a(\) €
Lq(dX) (where ¢ = p/(p—1) > 2), by the Hausdorff-Young theorem, so dv/dX €
Lg/2(d)), and with v = min{q/2, 2}, Proposition 3.5(ii) applies to U and f = fo.

COROLLARY 3.6: Let {a,} be a sequence of complex numbers, and let 1 < u <
oo with dual index v. Let T be a contraction of Ly(u) and f € Lo(u). The
series Y oo, anT™f converges a.e. and in Ly-norm, and sup, ;| > -, axT* f|
is in Lg(p), if for some € > 0 any of the following sets of conditions is satisfied:
(i) T, laalPrl @D log n(loglog )1+ < oo and Y0, (T, f)IY <
Cn", for some 0 <y < 1.
(i) 300, Jan|*ntHM@=1/2(log n)*/2(log log n)*/?*¢ < 0o and

S KTEE £ < Cn?,
k=1

for some0<y<landl<u<?2.
(i) 3500 |an|**/ (1) < 0o and f has spectral density in L. (d)).

Proof: (i) Put d(j,1) = Ei;:j-H lax|? and p = 2. By Proposition 3.4(ii), (15)
holds for {a,T™f} with ¥2(n) < C'n'/*+7/?_ Theorem 2.15 yields the result.
(ii) By Proposition 3.5(i), (9) holds with A, = C'nt"t1/¥ p =2 m,, = |a,|*,
and ¢ = 2/u. Since 1 < u < 2, we have ¢ > 1 and Theorem 2.9(iii) applies.
(iii) By the first inequality in Proposition 3.4(iil) we obtain (10) with p = 2
and t = 2u/(u + 1) < 2. Hence Proposition 2.10(ii) applies. |
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Remarks: 1. For any u > 1 and y = 0, the condition on {a,} given in (i) or in
(ii) implies the condition in (iii). Indeed, by Holder’s inequality

o (o]
S Jan /0D < ( 3" Janfn* logn(loglogn)***

n=1 n=1

0 1 1/(u+1)
* (; n(logn)u(loglogn)u<l+f>) '

Similarly, the condition in (ii) with v = 0 implies (iii).
2. If 1 < u <2 and f has spectral density in L,(d)), then, as mentioned
before, Y _p, [{T* f, f)|” converges. The previous remark shows that in this case

>u/(u+1)

(iii) yields a better result (weaker assumptions on {a,}) than (i) or (ii).

3. If 2 < u < ooand Y oo, (T*f, f)|Y converges, then by the Hausdorff-
Young theorem f has spectral density in L,(d)\). By Remark 1 above, (iii)
yields a better result than (i). Thus, for u > 2, (i) is relevant only for v > 0.

4. By the computation in Remark 1 above, the condition on {a,} given in
[23, Corollary 3.3(i)] (for unitary operators) when f has spectral density in L,
implies the condition in (iii).

5. (i) and (ii) are equivalent for v = 2, but for 1 < u < 2 and v = 0,
(ii) does not imply (i). Specifically, for any 1 < u < 2 there exists a positive
sequence {a,} such that the series 300 |a,|*n(*~1/2(logn)*/%(loglogn)*/*+¢
converges, but 3°°0 | |an|?n'/* log n(lognlogn)'*< diverges.

Define a, = (2¥)~1/2% for n = 2%, and a,, = 27" otherwise. We have

k(log k)¢ = o0,

K

Z lan|?n'/* logn(loglogn)!™e =
ne{2k}

so (i) does not hold. On the other hand,
Y lanl*nt=1/% (log )"/ loglogn)*/2+*

ne{2k}

o0 o0
k%/2(log k)v/2te
ky—1/2 (oky(u—1)/2u/2 24e _ _
Z (2%)71/2(2%) N (log k)*/ —Z (2C-w/2)k

£
Il

1

k=1 k=1
The last sum converges, since for u < 2 the denominator has exponential growth.
The convergence of the series is not affected by adding the convergent series

Zn&{?'“} Ty SO (ll) hOldS.
6. Recall that for any T power-bounded on Lo, convergence of

oo
> lanl*n(logn)®
n=1
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implies a.e. convergence of > a,T" f, by Remark 6 to Proposition 2.11. In each
case of Corollary 3.6 the power of n in the series is less than 1.

We next show that when u = oo, Corollary 3.6(i) remains true (only) when
¥ > 0.

COROLLARY 3.7: Let {a,} be a sequence of complex numbers. Let T be a
contraction of Ly () and f € Ly(p). The series Y .- | anT™f converges a.e. and
in Ly-norm, and sup,,~, | >.p_, axT* f| is in Lo(), if any of the following sets
of conditions is satisfied:

(i) o2, lan|?*n? logn(loglogn)!*€ < oo and Y., (T*f, f)| < Cn", for
somee>0and0 <y <1

(ii) Yo7, lan|?(logn)? < oo and f has bounded spectral density.

Proof: (i) Put d(j,1) = Zﬁg:jﬂ lax|? and p = 2. By Proposition 3.4(i), (15)
holds for {a,T™f} with ¥2(n) < C'n?. Theorem 2.15 yields the result.

(i) By Proposition 3.4(iv), (9) holds with A, = C’, p = 2, ¢ = 1, and
My = |a,|?, so Theorem 2.9(i) applies. [ |

Remarks: 1. T 3> (T™f, f)| < oo, then the unitary spectral measure of
f is absolutely continuous with continuous Radon-Nikodym derivative. Hence
the spectral density of f is in L, (dA) for any 1 < u < oo, and we can use either
Corollary 3.7(ii), or Corollary 3.6(iii) with some u < oo large. These two results
are not comparable. When a,, = 1/(y/nlog® n), only Corollary 3.7(ii) applies; if
we define asx = 1/k and a, = 0 for n not a power of 2, then Corollary 3.6(iii)
applies with any u > 1, while 3", |a,|?log”n = co.

2. Let {fn} C La(u) be orthonormal, and let T be induced on L, by the
shift, i.e., Tg = 0 for g € {f,}* and Tf, = fny1 for n > 1. Applying part
(ii) to T with f = f; yields the Menchoff-Rademacher theorem. Menchoff’s
example in this context shows that when v = 0, (i) is no longer sufficient for
a.e. convergence of > an fn. Applying Corollary 3.6(iii) yields Menchoff’s [31,
Theorem 12].

Example 3.3:  On Ly(T,v) define U f(A) = Af(A). Then [ |Uf|*dv = [|f]?dv,
and hence U is a unitary operator (with U*f(A\) = Xf(\)). The sequence
Xn(A) := U™ = A" is wide sense stationary with (X,,Xo) = [ A"dy, so its
spectral measure is v.

This example exhibits a wide sense stationary process with any pre-assigned

spectral measure. It is a concretization of (the general) Example 4 in Doob [12,
p. 479)].
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Definition 3.2: Let {a,} be a sequence of (complex) numbers, and let 1 < ¢t <
00; we say that {an} € Wy if sup, 5o L 30 |ax|® < 00. If {an} is bounded we
say that {an} € We. For t > s > 1 we have W, C W, C W;.

COROLLARY 3.8: Let {a,} € W;, 1 <t <2 be a sequence of complex numbers,
and let 1 < u < oo with dual index v. Let T be a contraction of La(p) and
f € Ly(u). The series ¥ oo, anT™f/n®(logn)? (loglogn)® converges a.e. and in
Ly-norm, with sup,,s | 3" p, axT* f/k*(log k)? (loglog k)?| in Lo(u), for a, B,
and § determined ac_cording to the following conditions:

(1) IfFY_p_, KT f, f)Y < Cn” for some 0 <y < 1, then

a=[1+vyu-1)]/2u+1/t, B=1, and é>1.

(i) Y p_, KT*f, f)] < Cn" for some 0 < y < 1, then o =v/2+1/t, B =1,
and § > 1.

(iii) If Sopq {T*f, f)] < C(logn)” for some n > 0, then a = 1/t, B =
(3+1n)/2, and 6 > 1/2.

(iv) If f has bounded spectral density, then o = 1/t, 8 = 3/2, and § > 1/2.

Proof: 'The method of proof of [10, Lemma 2] can be used to show that if
{an} € W; then 302 |an|?/n?/tlogn(loglogn)!*t€ < co for every € > 0. Put
bn = a,/n*(logn)?(loglogn)?, and obtain the values of @, 3, and § by applying
to {b,} Corollary 3.6(i) for (i), Corollary 3.7(i) for (ii), Corollary 3.3(ii) for (iii),
and Corollary 3.7(ii) for (iv). |

Remarks: 1. Under the assumption >, |[(T™f, f)|/(logn)" < oo, Gaposhkin
[16, Theorem 5] showed, for a,, = 1, that 3 T™f//n(logn)®*+"/2 converges
a.e. The assumption is stronger than our assumption in (iii), and the convergence
statement is better.

2. In Example 3.1 take 0 < g € Ly(dA) unbounded. Then f := ,/g satisfies
Yney UT* £, £ <igll%,(an)» but since g is unbounded, 3,2, KT*f, )] = oo

3. Let T be a symmetric (i.e., T* = T') contraction on Ly. If f € L, satisfies
S KT )] < o0, then 3°, [IT™f||* < 00, s0 3, [T™f()|* < co a.e. For
{an} € W;, 1 <t <2, and any 0 > 1/2, Cauchy’s inequality yields

o0

Z IanT f( )l
“ n!/t(logn)'/?(loglog n)°

[o¢]

s (Z n?/tlognlggglogn 1+e) (ZIT”f(m ) < o0,
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which gives a better rate than the general result in (iv).

LEMMA 3.9: Let 8 be a one-sided shift of an ergodic Markov chain {{,} with
invariant initial distribution p and Markov operator T. For f € Lo define
Xn = f(&n). Then {X,} is strictly stationary and E(X,Xo) = {T"f, f).

Proof: Since X,, = f(£,) = Xp 0 6™, the sequence {X,} is strictly stationary.
Since f € L2(u), we have {X,} C Ly(P,). We have

B, X0) = [ £(6) 5 (€0, = [ / f(sn)f@o)dm] du
- / T f(2) f(2)p(dz) = (T, f),
and the result follows. [ ]

Remarks: 1. With the help of the lemma, we can make assumptions on
{{T™f, f)} and apply the previous results to the operator induced by the shift.
2. The Lemma applies also to the 2-sided shift.

Example 3.4: On (—=, x| there exists a finite measure v, singular with respect
to the Lebesgue measure, such that its Fourier coeflicients {#(k)} tend to zero
[54, Theorem 10.12, vol. II, p. 146]. It is not hard to modify v to be defined on
the unit circle T', and concentrated on 7/2 < arg A < 7.

On Ly(T, v) we define U f(A) = Af()). For v-almost every A we have |1 —)| >
V2, so clearly I — U is invertible on Ly(v), and g(\) := 1/(1 — X) € Ly(v). As
in Example 3.3, we take the stationary sequence U™1 = A", which has spectral
measure v. Since (U™1,1) = #(n) — 0, we have U™1 — 0 weakly by Foguel
[13]. Since (I — U)g = 1, and g is in the closed subspace generated by {U"1}
(see Lin—Sine [28]), also U™g — 0 weakly. Hence Y ;_U*1 — g weakly, so
> reo(U*1,1) converges; but since v is singular, Y 5o, [(U*1,1)> = co. The
example shows that the following conditions can live together:

(i) f e -U)La(v).

(ii) The spectral measure of f is singular, so Y e [(UX £, f)|? = 0.

(iit) Y- peo(U*f,f) converges, but only conditionally, and in particular (U*f, f)
— 0.

4. Random power series of L;-contractions

In this section we treat a.e. convergence of random power series of contractions
in Ly spaces. Norm convergence of such series was considered in [36]. Let
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{fn} be independent random variables on the probability space (2, ). For a
contraction T on Lo(Y, 7) of some measure space, we define the (formal) random
power series of T by 5 7o, fi(z)T*g, g € La(m). We are interested in having
for a.e. z the a.e. convergence of all random power series of Lo-contractions.
To be more precise, we want a universal null set in ), such that when z € Q
is outside this null set, for every contraction T on Ly(w) and g € Lo(m) the
series 3 po ;| fu(x)T*g converges m-a.e. and, in particular, for every orthonormal
sequence {gix} C Lo(m) the series 377, fi(z)gr converges m-a.e. By [46] we
must have 300 | £, (z)2lognlogt(1/|fn(2)]) < oo a.e., and if |f,(z)]| is a.e.
non-increasing (e.g., fn(x) = cpen(x) with |e,(z)| =1 a.e. and |c,| decreasing)
then [47] necessarily 3 o2 | | fn(x)]*(logn)? < oo a.e.

Given complex numbers ag, a1, .. .,a, and a unitary operator U on a Hilbert
space, the spectral theorem yields that || 3", axU*|| < max|y=1 | g axA*].
The unitary dilation theorem yields that for every contraction T' on a complex
Hilbert space we have
(19)

n n
D al* D ae\*
k=0 k=0

As (19) suggests, application of the previous methods requires good estimates

< max
[Al=1

on C(T')-norms of blocks of the generating random Fourier series Y, f.(z)A*.
Throughout this section our (complex valued) random coefficients {f,} will be
independent.

PROPOSITION 4.1: Let { f,} be symmetric independent complex valued random
variables on (Q, ). Then (with 0/0 interpreted as 1)

l k12
max = — *A
supsupexp{ A 1|Zkl_3+1 fid] } < 0.
320 >3 log(l + 1)(Ek=]‘+1 FARDRAIAM
Hence for a.e. x € Q) we have
l k
maxjy|— "y {T)A
(20) sup =t | kg Fe(@)A" ‘o
1>5>0

173
o0 + 1) (22=j+1 |fk<x>|2)

The proposition was proved by Weber [50] (using the metric entropy method).

THEOREM 4.2: Let 1 < p < 2, and let {f,} C L,(},u) be a sequence of
independent centered random variables. If

(21) i I fall3(logn)® < oo (p=2),

n=1
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or

oo
(22) Z || fal[5(log n)? (log log n)?/**¢ < 0o for some e >0 (1 <p < 2),

n=2

then there exists a subset Q* C Q with u(Q*) = 1, such that when z € Q*, for
every contraction T on a space Lo(n) and any g € Lo(r), the series

o0
(23) Z fa(z)T™g converges w a.e.
n=1

When {f,} are symmetric, for x € Q* there is a constant K, < 0o, determined
only by {f.(z)} (and p), such that

Y fel@)Thg
k=1

In the general case, if w is a probability, then for x+ € Q* we have
SUp,s1 | 2opey fr(2)TRg| in Ly(n).

(24) sup

n>1

< Kollglle-
2

Proof: We first prove the case that each f, is symmetric. By Beppo Levi’s
theorem, condition (21) or (22) implies, respectively, that for y a.e. z € ) we
have

or
(%%) Z |£(2)|P (log n)? (log log n)?/?*¢ < co.
n=1

By symmetry of {f,}, Proposition 4.1 applies. We define Q* as the set of z for
which either () or (xx) (according to p =2 or 1 < p < 2), together with (20),
hold. Fix z € Q*. Given a contraction T on Lo(r) and g € Lo(n), (19), (20),
and [ - [le; < ||+ [le, yield

I
Z fu(x)Tg

k=j+1

ka JAF

k=j+1

{ 1/p
< lgllsCo/IogT & 1)( ) me)l”)

k=j+1

< Hlgll2 max
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Hence for z € Q*, (9) is satisfied by {fn(2)T"g} C La(7), with my, = |fn(2)|?,
g=2/p>1,and 4, = ||g|3C? log(n + 1). When p = 2, using (*) we have

o0 o0
Y Az (logn)*mn < CllgliC2 3 (logn)*| fa(2)[? < oo
n=1 n=1
Hence Theorem 2.9(i), applied to {f,(x)T™g} C L2(7), yields the =w-a.e. con-
vergence of the series Y 70, fn(2)T"g and the estimate (24) for the maximal
function of the partial sums.
When 1 < p < 2, using (**) and ¢ = 2/p we obtain

o0
S Alf(10g )"/ (10glog n)/**“m,
n=1
< Cllgll§C2 3" (log n)? loglog n)”/ 2+ fa @)” < o0,
n=1

and now Theorem 2.9(iii) applies. This concludes the proof when {f,} are
symmetric.

We now prove the general case of {f,} centered. Let {f/,} defined on (&', u')
be an independent copy of {f.}, and put h,(z,z') = fn(z) — f,(z') on
(@ x ', pu x p'). Then hy, is symmetric with ||hn|lp < 2|[frllp, so applying to
{h»} the result for the symmetric case proved above, we obtain a set £ C 2 x
with p x p/'(E) = 1, such that for fixed (z,2’) € E and any contraction T of
Ly(m) and g € La(n), the series > o | hn(z,2')T"g converges 7 a.e. Define
E,={2' €V :(z,2') € E} and put Q* = {z € Q: y/(E;) = 1}. By Fubini’s
theorem, for u a.e. x we have p'(E;) =1, so u(?*) = 1.

Now fix 2 € Q*. Let T be a contraction on Ly(Y, ) and g € La(m). In order
to show that Y o | fn(2)T"g converges m-a.e., take any ' € E, and consider
the identity

N N N
(* % %) Z fo(x)T™g = Z ho(z,z")T"g + Z fL(z"T"g.
n=1 n=1 n=1

As N 5 oo, the first sum on the right hand side converges 7-a.e., since (z,z’) €
E. We show that ' € E, can be chosen such that the second sum is also 7-a.e.
convergent.

As mentioned in the introduction, we may assume that 7 is a probability,
so for p < 2 we have [T7llz,(r) < IT"gllar) < 19llzo(r)- The appropriate



Vol. 148, 2005 EXTENSIONS OF THE MENCHOFF-RADEMACHER THEOREM 77

condition (21) or (22) yields

(o 9] o0
| SNl gPdn < ol 0y Y- NI < o,
n=1 n=1

s0 by Beppo Levi's theorem we have that the series > " || //|[|T™g(y)|* con-
verges m-a.e. Hence for 7 almost every fixed y € ), the Marcinkiewicz—Zygmund
theorem [30, Theorem 5’| (see [8, p. 114]), applied to the independent cen-
tered sequence {f,T"g(y)} C L,(i'), yields that the series > >, f1T"g(y)
converges p'-a.e. By Fubini’s theorem, we have that for y'-a.e. z' the series
Yoo | fi(a')T™g converges m a.e. Since p'(E;) = 1, this shows that we can find
z' € E; for which also the second term on the right hand side of (%) converges
m-a.e., and the 7-a.e. convergence of >_-° | f,(z)T"g when z € Q* is proved.

Fix z € Q*. Let (), m) be a probability space, T' a contraction on Lq(7),
g € Ly(m), and y € Y. Since {T™g(y)f,} are centered independent in L, ('),
the inequality of [5] yields

{
§2 S TR W)PIFIE forl>j>0.
P k=j+1

h

k=j+1

Hence for d(3,1) := Eic:j+1 [T*g(y)|?|| fill2 we have AY <2 for every n. By
Theorem 2.4, with ¢ = 1, we have

[ s }jf(x To(y)| 4

Integrating the above with respect to 7 and using Fubini’s theorem we obtain

[/

Since ||T*g|l, < llgllz (for p < 2 because 7 is a probability), the appropriate
condition (21) or (22) now implies convergence of the last series. Hence for a.e.
¢’ we have [sup,s; | iy fi(2')T*g(y)|Pdr(y) < oo, and 2’ can be chosen in
E; since p/(E;) = 1. With this 2’ the suprema of the sums on the right hand
side of (x * x) are both in L,(7), which proves the assertion. ]

o
W (') <C Y (log k)Pl fllBIT* g(y)IP.
k=1

P
dw<y>] ai' (@) < O S AT 912008 k)P,
k=1

Y fi@)Trg(y)
k=1

Remarks: 1. When p = 2, we have in the general case sup,, | > r_, fiu(2)T*g]
in Ly(7) even if 7 is not finite.

2. By considering for each A € I the “rotation” it induces and applying the
theorem to g(z) = z, we obtain that (21) or (22) implies that for a.e. z € Q2 the
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random Fourier series 3 fn(2)A" converges for every A. When {f,} are sym-
metric, Billard’s theorem [25, Theorem 3, p. 58] yields a.e. uniform convergence
of the series. In this case, (19) yields that for a.e. = the series 3 oo, fn(z)T™
converges in operator norm for any contraction T on Lo (uniformly in all con-
tractions).

3. For p = 2 and f, = cpe, (throughout the paper {e,} is a Rademacher
sequence defined on the unit interval), (21) becomes Y |cp|*(logn)® < oo.
Rosenblatt [40, Theorem 11] used a stronger assumption, namely

o0
Z leal?vn(logn)*0 < oo
n=1
for some § > 0, in order to prove the assertion of the theorem.
4. For 1 < p<2and f, = cpen, (22) becomes

o0
Z e P (log n)? (loglog n)?/2 ¢ < 0.

n=1

This condition and Y-, |¢,|*(logn)® < 0o are not comparable. The sequence
cn = 1/(/nlog®n) satisfies only the second condition, while ¢, = 1/(k?) for
n = 2* and ¢, = 0 otherwise satisfies only the first one.

COROLLARY 4.3: Let 1 < p < 2, and let {f,} C Lp(Q, 1) be a sequence
of independent centered random variables with sup,, ||fx||p < co. Then there
exists a subset Q* C Q, with u(2*) = 1, such that when x € §}*, for every
contraction T on a space La(n) and any g € La(7), the series

(25) i fn(@)T"g converges T a.e.
n!/?(log n)? (loglogn)” ’

with 8 =2 andy > 1/2 when p=2, and with f=1+1/pandy>1/2+1/p
when 1 <p < 2.

Proof: Apply the previous theorem to {f,/n/?(logn)?(loglogn)”}. ]

Remarks: 1. The convergence (25) implies (e.g., [11, Lemma 2.19]) that for
any a > 1/p

[o¢] Tn
(26) Z in—(—fly converges T a.e.
n=2
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2. For p = 2 and under the additional assumption that {f,} are symmetric
identically distributed, Boukhari and Weber [7, Corollary 3.3] proved (26), and
also (25) with § > 2 and v = 0. M. Weber has informed us that when p = 2
the general symmetric case can be deduced also from the main result of [7].

THEOREM 4.4: Let {fn} be a sequence of ii.d. centered random variables on
(Q,u). If [ | fi|log™ | fildp < oo, then there exists a subset Q* C Q with p(Q*) =
1, such that when x € Q*, for every contraction T on a space Lo(n) and any
g € Lo(m), the series

(27) Z fi(£13—g converges T a.e.

with sup,sy | S, fu(@)T¥g/k| € La(r).
When {f,} are symmetric, then the above assertions are true if we assume
only [ |fillog™ log™ | f1ldu < oco.

Proof: We start with the general centered case. Since {f,} are assumed iden-
tically distributed with f; € Ly (), we have o p{|fn] > n} < o0, so for a.e.
x € 2 we have |f,(z)| > n only for finitely many n. Hence it is sufficient to
prove the assertions for {f,1¢s,|<n}} instead of {f,}.

Put by = filgg <1y and by i= folyjs,j<n/10g3 ny for n > 2. Throughout
this proof, the logarithm is the natural one, and log3¢ denotes (logt)®. By
definition, {h,} is a sequence of independent bounded random variables. Put
Eh, = [ hydp.

For a contraction T on Ly(Y, ) and g € Lo(m) we have the identity

fa@) 145, 1<ny (@) T
5 -

M=

(%)

3
I
-

N n
Z (hn(x) _nEhn)T g+

n=1 n

EhnTng I i\/': fn(x)l{n/ log® n<|fu|<n} (x)Tng ]

n
n=1 n

M=

Il
hA

We have to find a universal set of z (independent of T' and g) for which the
assertion of the theorem holds. Note that the second sum does not depend on
x.

For the first sum on the right hand side of (x), we want to apply Theorem 4.2
to {(hn — Ehy)/n} with p = 2, so we show that {(h, — Eh,)/n} satisfies (21).
Denoting f := f; and using ||h, — Ehy|l2 < 2||hn]||2, we obtain, via Fubini’s
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theorem on (2 x N),

[e o]

2

n=2

h

2 o]

1
log’ n = Z/ﬁlfnm{:mswlog?' ny log® ndp
2 n=2

= [ 1
= 2/7_@5|f|21{|f|§n/mgsn} log® ndy
n=2

3

o LG D S

{22 5 > (o)}

3
< [ )3 <y,

{n>max{2,|f(z)|log® | (=) }}

since 0 < a < n/log®n = alog’a < n. We now estimate the tail of the
convergent series Y oo ,n"2 log® n, which has eventually decreasing terms, by
the integral test. Computing %[t_1 log® t] we see that there is a constant C
such that for ¢ large (i.e., t > K) we have t~2log® ¢t < CL[—t! log®#]. Since
for large values of |f| we have also log(|f|log® |f]) < 2log|f], the last integral
is bounded by

3

log”n
Cy Jr/l{mzk}lfl2 > o
{rem>lT1og® £}

(log(!f] log® 1D
scl+02/1{!f|21<}1f|2 |f|(log|£])? an

=C; +8C> / 145>k fldu < C1 + 8C, / | fldp < 0.

Thus 5%, ||(hs, — Ehy)/n||2log® n < co. Let ©** be the set given by Theorem
4.2, so for fixed z € Q**, for any contraction T on Ly(n) and g € La(7) we have
7 a.e. convergence of the first sum of (). Note that only integrability of f was
needed.

For the second sum in (x), we show that > >, |Eh,|/n < oco. Since fy, is
centered, Ehy, = —E(fnlys, |5n/10g% n}) for n>2.

CLAIM: There exists N such that ifn > N and a > n/log®n, thenn < 2a log? a.
Proof: Fix N with logn/log(log*n) > 10 for n > N. For n > N and a >
n/log n we have

n n

[log n — log(log® n)]® > =—(0.91ogn)® > 1n
log” n 2

alog®a >
& log® n
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We return to the second sum in (x). For N given by the claim large enough we
have

{2 |Ehn| i E(|fnl1{i£a1>n/108% n}) /|f|1{|f|>n/log "

n
n=2 n=2

N |f|1{|f|>n/log3 n} 1
: Z/ n d“+/1{|f|ze}lf| 3 ~dp
" {N<n<2lf]log® | £1}

<G+ [ 120171082+ log f| + 31og og | )ds < o,

since the last integral is finite by assumption. Hence Y>> | |Ehy,|/n converges;
thus, as remarked in the introduction, for any contraction T and g € Lo(7), the
series 3 o [ER,T"g|/n converges m-a.e.

For the third sum in (%) we use the previous computation to obtain

/i |fn|1{n/10g3n<|fn]§n}du < /i |f|1{n/10g3n<1f|}du <.
n=2 n n=2 n

Hence by Beppo Levi Yo7 |fa(z 2)|1{n/ 1083 n<|fn|<n}(T)/n < 00 converges
on a set ' with 4(Q') = 1. Now it is clear that for z € Q' the series

Zlf“ )10/ 10g? n<|ful<n} (@) T gl /0

converges m a.e. We define Q* = Q' N Q*, so for ¢ € N we have 7 a.e.
convergence in ().

By Theorem 4.2 the maximal function of the first term in (x) is square inte-
grable. For x € (* the suprema of the last two terms in (*) are bounded by
the corresponding w-a.e. absolutely convergent series; each series is square inte-
grable by the triangle inequality and the absolute convergence of the series of
coefficients. This yields the desired square integrability of the maximal function.

When {f,} are symmetric, so are {h,}, and Eh, = 0. Hence the second
term in (x) vanishes identically. To treat the third sum in this case, we give a
direct proof of the a.e. convergence of 3.2 | | fn(2)|1{n/ 10g% n<|fa|<n} () /1 < 00,
which uses only the condition [ |f|log’ log™ | f|du < co. Indeed, using the claim
as before we obtain

/i |fn'1{n/log;n<|fn|§n}du _ /i |f|1{n/log;n<|fl_<_n}du
n=2 n=2

1
SC’+/1{1f12e}lf| > n

{I71<n<2lFl108% |£1}
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<C+ [ 1712011101082 +log] £ + log1og” ] ~ log(|f| ~ 1))d
<0+ [ 11201f1(0g2 + 3logllog 1) + 2/t < .

Since the application of Theorem 4.2 required only integrability of f, we finish
the proof of the assertions as above. 1

Remarks: 1. When {f,} are centered ii.d. and we take T the identity, we
obtain p almost sure convergence of 37, [fn(z)/n]. By the discussion following
Theorem 6 of [30], in general there is no weaker integrability condition on f;
that ensures this convergence.

2. When {f,} are symmetric i.i.d. which satisfy the assertion of the theorem,
taking all multiplications by A (with |A] = 1) we obtain pointwise convergence
of the random Fourier series 3o [fn(2)A"/n] (which is in fact uniform in A
[25, p. 58]). By [45] we must have f; € Llog" logt L.

An inspection of the proof of Theorem 4.2 shows that in fact we prove the
following.

THEOREM 4.5: Let {a,} be a sequence which satisfies

o
i) Z lan|?(logn)? < o for p=2,
n=1
or -
Z |an|?(log n)?P(loglogn)?/?*¢ < 0o for 1 <p<2ande>0.
n=2

!

Z ap\F

k=j+1

(ii) max

l 1/p
m E |ak|p) for every l > j > 0.
=1

k=j+1

< cm(

Then for every contraction T on Ly(n) and g € Ly(w), the series Y oo a,T"g
converges a.e. and in Ly-norm. In particular, the Fourier series 3, ; anA\"
converges for every |A\| = 1.

Remark: By Proposition 4.1, for a.e. z € [0,1] the sequence

an = €n(z)/v/nlog®(n + 1)

satisfies both conditions of the theorem with p = 2. However, we have no specific
example of the appropriate “choice of signs”.
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Recall that a Dunford-Schwartz operator on L (Y, 7) is a contraction T which
is also a contraction of L..(Y,#), and therefore is also a contraction of each
Ly(Y,m), 1 < s < oo, by the Riesz—Thorin theorem (for a simple proof for
Markov operators, see [27, p. 65]). The Dunford-Schwartz theorem gives a.e.
convergence of % > py Tkg for every g € Ly(n).

Our results obviously apply to T Dunford-Schwartz and g € Ls(r), and this
raises the question about what happens for g € L, 1 < s < 2.

Recently, Assani [4] proved the 7-a.e. convergence of Y ;2. fi(z)T*g/k for
g € Ly(m), s > 1, when {f,} C Ly, p > 1, are centered i.i.d. This extends pre-
vious results of Rosenblatt [40, Theorem 18] (for {f,} a Rademacher sequence),
Boukhari and Weber [7] (p = 2 and {f,} symmetric), and Assani [2], [3] (con-
vergence of L 30| fi(z)T*g). Note that for g € Ly(n), Theorem 4.4 yields
Assani’s result under the weaker requirement that the i.i.d. variables {f,} are
in Llog™ L.
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